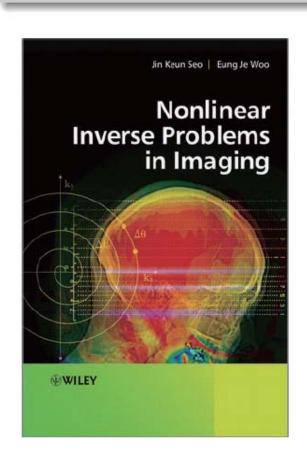
Partial Differential Equations



Part IV: Euler-Lagrange Equations

Homepage

http://www.seojinkeun.com/#!pde-course-/c1laj

Jin Keun Seo CSE, Yonsei University

Optimization problems

The optimization problem is to find the best solution from all possible solutions. We want to minimize an objective function J(u) (the energy, cost, entropy, performance, and so on) within a set W.

Minimize J(u)

within the set W

If it is difficult to find the minimizer analytically, we use iteration method

$$\mathbf{u}^{n+1} = \mathbf{u}^n - \lambda \nabla J(\mathbf{u}^n)$$

$$\nabla = ?$$
?

The Euler-Lagrange equation of J(u) is somewhat $\nabla J(u) = 0$, where ∂ is "Freschet" derivative.

Minimization in Finite Dimension

Minimization

Assume $\mathbf{u}_* \in W = \mathbb{R}^n$ is a global minimum of the objective function $J(\mathbf{u})$ on the domain W, that is,

$$J(\mathbf{u}_*) \leq J(\mathbf{v})$$
 for all $\mathbf{v} \in W$.

Then \mathbf{u}_* is a critical point of J:

$$0 = \frac{d}{dt}J(\mathbf{u}_* + t\mathbf{v})|_{t=0} = \nabla J(\mathbf{u}_*) \cdot \mathbf{v} = \langle \nabla J(\mathbf{u}_*), \mathbf{v} \rangle \quad \text{for all } \mathbf{v} \in \mathbb{R}^n.$$

The left side of the above identity is known as the directional derivative of J with respect to \mathbf{v} that is defined as

$$\langle \nabla J(\mathbf{u}_*), \mathbf{v} \rangle = \sum_{j=1}^n \partial_j J(\mathbf{u}_*) v_j.$$

Note that $-\nabla J(u)$ is the steepest descent direction of J at u.

Minimization in Sobolev space $H^1(\Omega)$

Minimize I(u)

within the set
$$W := \{ v \in H^1(\Omega) : v |_{\partial \Omega} = f \}$$

 u_* is minimizer iff $J(u_*) \leq J(v) \ \forall v \in W$

iff
$$J(u_*) \leq J(u + t\phi) \ \forall \phi \in H_0^1(\Omega), \ \forall t \in R$$

$$\frac{\mathrm{d}}{\mathrm{d}t}J(u+t\phi)\mid_{t=0}=0 \quad \forall \phi \in H^1_0(\Omega)$$

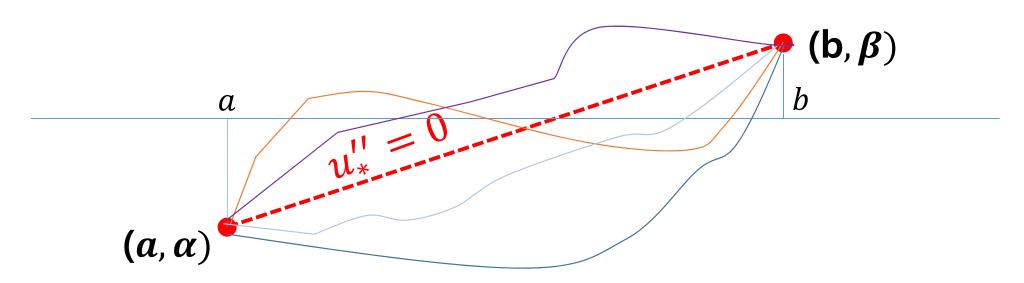
Length Minimization joining two points

Consider the curve minimization problem joining two point (a, α) and (b, β) :

Minimize
$$J(u) = \int_a^b \sqrt{1 + (u')^2} dx$$
within the set
$$W = \{ u \in W^{1,1}(a,b) \mid u(a) = \alpha, u(b) = \beta \}$$

Here, $W^{1,1}(a,b) = \{u \mid \int_a^b \sqrt{u^2 + (u')^2} dx < \infty\}$. (This is a kind of Sobolev space or a Banach space.) If u_* is a minimizer, then

$$u''_*(x) = 0$$
 $a < x < b$.



Consider the curve minimization problem joining two point (a, α) and (b, β) :

Minimize
$$J(u) = \int_a^b \sqrt{1 + (u')^2} dx$$
within the set
$$W = \{ u \in W^{1,1}(a,b) \mid u(a) = \alpha, u(b) = \beta \}$$

Here, $W^{1,1}(a,b) = \{u \mid \int_a^b \sqrt{u^2 + (u')^2} dx < \infty\}$. (This is a kind of Sobolev space or a Banach space.) If u_* is a minimizer, then

$$u_*''(x) = 0$$
 $a < x < b$.

Proof. Assume that \boldsymbol{u} is minimizer

• For all $v \in H_0^1$, we have

$$\frac{d}{dt}J(u+tv)|_{t=0} = \frac{d}{dt} \int_{a}^{b} \sqrt{1 + (u'+tv')^{2}} dx \Big|_{t=0}
= \int_{a}^{b} \frac{2u'v'+2tv'^{2}}{\sqrt{1+(u'+tv')^{2}}} dx \Big|_{t=0} = \int_{a}^{b} \frac{2u'v'}{\sqrt{1+(u')^{2}}} dx
= 2 \int_{a}^{b} \frac{d}{dx} \left[\frac{u'}{\sqrt{1+(u')^{2}}} \right] v dx
= 2 \int_{a}^{b} \frac{u''[\sqrt{1+(u')^{2}}-2u'^{2}]}{1+(u')^{2}} v dx$$

Consider the curve minimization problem joining two point (a, α) and (b, β) :

Minimize
$$J(u) = \int_a^b \sqrt{1 + (u')^2} dx$$
within the set
$$W = \{u \in W^{1,1}(a,b) \mid u(a) = \alpha, u(b) = \beta\}$$

Here, $W^{1,1}(a,b) = \{u \mid \int_a^b \sqrt{u^2 + (u')^2} dx < \infty\}$. (This is a kind of Sobolev space or a Banach space.) If u_* is a minimizer, then

$$u''_*(x) = 0$$
 $a < x < b$.

$$\frac{d}{dt}J(u+tv)|_{t=0} = 2\int_a^b \frac{u''[\sqrt{1+(u')^2}-2u'^2]}{1+(u')^2} v dx$$

• Since the above identity holds for all $v \in H_0^1$, the minimizer u_* satisfies Euler-Lagrange

$$\frac{u_*''[\sqrt{1+(u_*')^2}-2u_*'^2]}{1+(u_*')^2}=0 \qquad a < x < b$$

and hence

$$u_*''(x) = 0$$
 $a < x < b$.

Hence, the straight line joining (a, α) and (b, β) is the minimizer.

Dirichelt Problem

Let Ω be a domain in \mathbb{R}^2 . Consider the minimization problem

Minimize
$$J(u) := \int_{\Omega} |\nabla u(x,y)|^2 dxdy$$
 within the set $W := \{u \in H^1(\Omega) : u|_{\partial\Omega} = f(x,y)\}$

Here, $H^1(\Omega) = \{u : \int_{\Omega} |u|^2 + |\nabla u|^2 dxdy < \infty\}$. Then the minimizer u satisfies the Dirichlet problem:

$$\begin{cases} \nabla^2 u(x,y) = 0 & (x,y) \in \Omega \\ u|_{\partial\Omega} = f & \text{(the prescribed boundary potential)} \end{cases}$$

Proof. Assume that \boldsymbol{u} is minimizer

• For all
$$v \in H_0^1(\Omega) := \{v \in H^1(\Omega) : u|_{\partial\Omega} = 0\},$$

$$0 = \frac{d}{dt}J(u+tv)|_{t=0} = 2\int_{\Omega} \nabla u \cdot \nabla v \, dxdy$$

= $-2\int_{\Omega} \nabla^2 uv \, dxdy$

Since this hold for all $v \in H_0^1(\Omega)$, we have

$$0 = \nabla^2 u$$
 in Ω

Minimal Surfaces

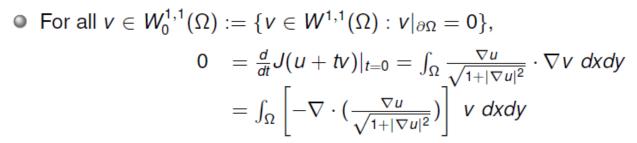
Consider the minimal surface problem

Minimize
$$J(u) := \int_{\Omega} \sqrt{1 + u_x^2 + u_y^2} dxdy$$

within the set $W := \{u \in W^{1,1}(\Omega) : u|_{\partial\Omega} = f\}$

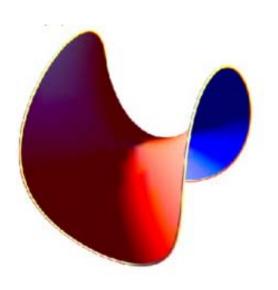
Here, $W^{1,1}(\Omega) = \{u : \int_{\Omega} |u| + |\nabla u| dxdy < \infty\}$. If a minimizer u exist, u satisfies the following nonlinear problem with the Dirichlet boundary condition:

$$\begin{cases} \nabla \cdot (\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}) = 0 & \text{in } \Omega \\ u|_{\partial\Omega} = f & \text{(Dirichlet boundary)} \end{cases}$$



Since this hold for all $v \in W_0^{1,1}(\Omega)$, we have

$$0 = \nabla \cdot (\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}) \quad \text{in } \Omega$$



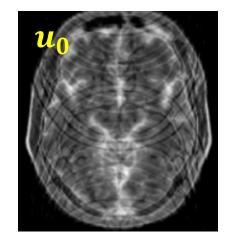
Total Variation Minimization

Consider the minimization problem

Minimize
$$J(u) := \int_{\Omega} |\nabla u(x,y)| + |u - u_0|^2 dx dy$$
 within the set $W := \{u \in W^{1,1}(\Omega) : \mathbf{n} \cdot \nabla u|_{\partial\Omega} = 0\}$

If a minimizer *u* exist, *u* satisfies the following nonlinear problem with zero Neumann boundary condition:

$$\begin{cases} \nabla \cdot \left(\frac{\nabla u}{|\nabla u|}\right) = 2(u - u_0) & \text{in } \Omega \\ \mathbf{n} \cdot \nabla u|_{\partial\Omega} = 0 & \text{(insulating boundary)} \end{cases}$$

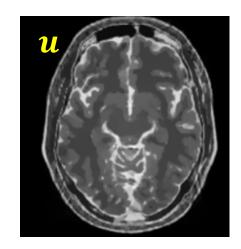


• For all $v \in W^{1,1}(\Omega)$,

$$0 = \frac{d}{dt}J(u+tv)|_{t=0} = \int_{\Omega} \frac{\nabla u}{|\nabla u|} \cdot \nabla v + 2(u-u_0)v \, dxdy$$
$$= \int_{\Omega} \left[-\nabla \cdot \left(\frac{\nabla u}{|\nabla u|} \right) + 2(u-u_0) \right] v \, dxdy$$

Since this hold for all $v \in W^{1,1}(\Omega)$, we have

$$0 = -\nabla \cdot (\frac{\nabla u}{|\nabla u|}) + 2(u - u_0) \quad \text{in } \Omega$$



Comparison of $L^2 \otimes L^1 - norm$ minimization

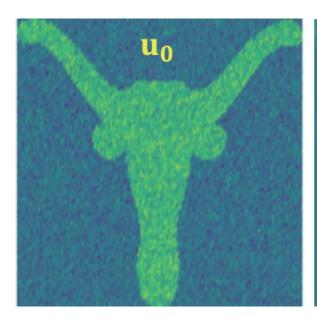
Let $u_0 \in H_0^1(\Omega)$ represent a noisy image defined in Ω . Consider the two minimization problems.

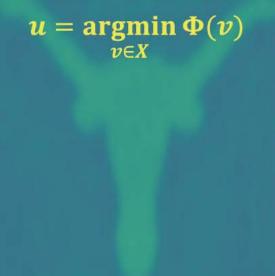
Minimize
$$\Phi(u) := \int_{\Omega} |\nabla u|^2 + |u - u_0|^2 dx$$

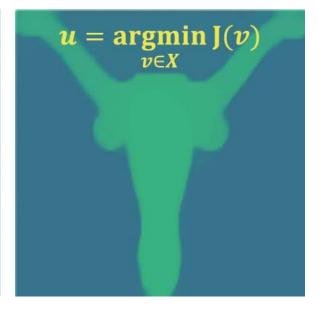
within the set $X := H_0^1(\Omega)$

Minimize
$$E(u) := \int_{\Omega} |\nabla u|^1 + |u - u_0|^2 dx$$

within the set $X := W_0^{1,1}(\Omega)$.





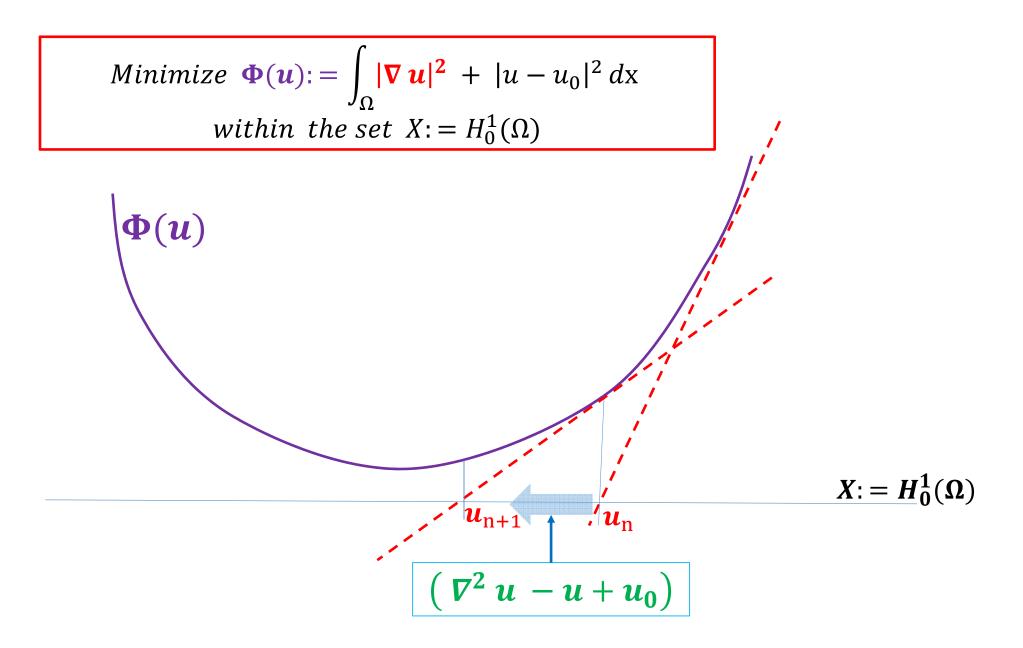


$$\frac{d}{dt}\Phi(u+t\phi)\Big|_{t=0}=-2\int_{\Omega}(\nabla^2 u-u+u_0)\phi \qquad \forall \phi\in H_0^1(\Omega)$$

- Hence, $(\nabla^2 u u + u_0)$ is the steepest descent direction of Φ at u, the direction that $\Phi(u)$ decreases most quickly. Explain the reason.
- The corresponding iteration schemes is

$$u_{n+1} = u_n - \lambda \nabla \Phi (u_n)$$

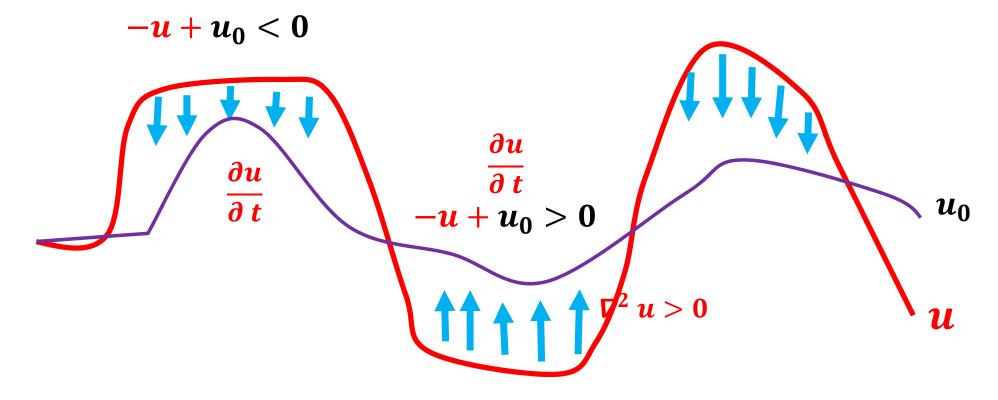
$$\frac{\partial u}{\partial t} = \lambda \left(\nabla^2 u - u + u_0 \right) \quad in \ \Omega, \qquad t > 0$$



$$\frac{\partial u}{\partial t} = \lambda \left(\nabla^2 u - u + u_0 \right)$$

Fidelity Fitting

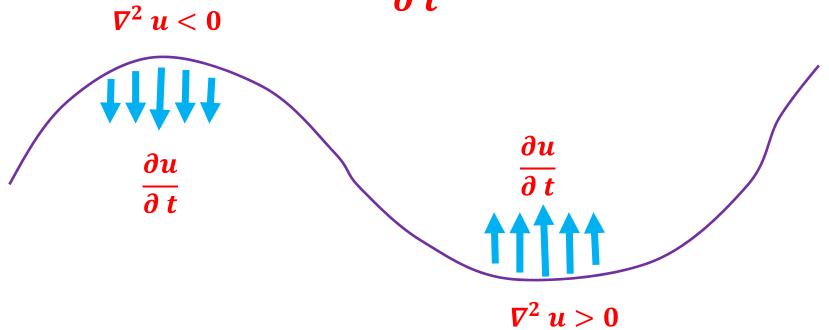
About
$$\frac{\partial u}{\partial t} = -u + u_0$$
 for image



$$\frac{\partial u}{\partial t} = \lambda \left(\nabla^2 u - u + u_0 \right)$$

Regularization

About
$$\frac{\partial u}{\partial t} = \nabla^2 u$$
 for image



$$\frac{d}{dt}E(u+t\phi)\Big|_{t=0} = -\int_{\Omega} \left(\nabla \cdot \left(\frac{1}{|\nabla u|} \nabla u \right) - 2(u-u_0) \right) \phi$$

- Hence, $\left(\nabla \cdot \left(\frac{1}{|\nabla u|}\nabla u\right) 2(u-u_0)\right)$ is the steepest descent direction of E at u, the direction that E(u) decreases most quickly. Explain the reason.
- The corresponding iteration schemes is $u_{n+1} = u_n \lambda \nabla E(u_n)$

$$\frac{\partial u}{\partial t} = \lambda \left(\nabla \cdot \left(\frac{1}{|\nabla u|} \nabla u \right) - 2(u - u_0) \right) \quad in \Omega, \quad t > 0$$

Final Remark

During 1990-2015, PDE-based algorithms had a significant impact on many image processing tasks. Currently, image processing is experiencing a paradigm shift due to a marked and rapid advance in deep learning techniques. Deep learning techniques are being applied for various purposes in image analysis area.