
Riemann integrable

Let Ω ⊂ R2 be a bounded domain and let f : Ω → R be a bounded
function.

• We enclose Ω in some rectangle B = [a1, b1]× [a2, b2] and
extend f to the whole rectangle by defining it to be zero
outside of Ω.

• Let P be a partition of B obtained by dividing
a1 = x0 < x1 < · · · < xn = b1 and
a2 = y0 < y1 < · · · < ym = b2:

P = {[xi , xi+1]× [yj , yj+1]︸ ︷︷ ︸
=subrectangle R

: i = 0, 1, · · · , n−1, j = 0, 1, · · · , m−1}.

• Define the upper sum of f :

U(f ,P) :=
∑

R∈P
sup{f (x , y) | (x , y) ∈ R} × (volume of R)
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• Define the lower sum of f :

L(f ,P) :=
∑

R∈P
inf{f (x , y) | (x , y) ∈ R} × (volume of R)

• Define the upper integral of f on Ω by
∫

Ω
f = inf {U(f ,P) : P is a partition of B}

and the lower integral of f on Ω by∫

Ω
f = sup {L(f ,P) : P is a partition of B}

• We say that f is Riemann integrable or integrable if
∫

Ω
f =

∫

Ω
f .

• If f is integrable on Ω, we denote
∫

Ω
f =

∫

Ω
f =

∫

Ω
f .
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Theorem. (Taylor’s Theorem for the case f ∈ C 3(Rn))

Let f : R3 → R is of class C 3. For x,h ∈ Rn,
∃c = x + t0h, 0 < t0 < 1, such that

f (x + h) = f (x) +
n∑

i=1

∂f

∂xi
(x)hi +

1

2!

n∑

i ,j=1

∂2f

∂xi∂xj
(x)hihj

+
1

3!

n∑

i ,j ,k=1

(
∂3f

∂xi∂xj∂xk
(x + t0h)hihjhk

)

f (x + h)− f (x) =
∫ 1
0

d
dt f (x + th)dt =

∫ 1
0

∑n
i=1

∂f
∂xi

(x + th)hidt

=
∑n

i=1

∫ 1
0

∂f
∂xi

(x + th)hi
d(t−1)

dt dt (Why?
d(t−1)

dt = 1)

=
∑n

i=1

[
∂f
∂xi

(x)hi −
∫ 1
0

d
dt

(
∂f
∂xi

(x + th)hi

)
(t − 1) dt

]

=
∑n

i=1
∂f
∂xi

(x)hi + R1(h, x)

where R1(h, x) =
∑n

i ,j=1

∫ 1
0 (1− t)

(
∂2f

∂xi∂xj
(x + th)hihj

)
dt
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Using d
dt

(
− (t−1)2

2!

)
= (1− t) and integration by part,

R1(h, x) =
∑n

i ,j=1

∫ 1
0

d
dt

(
− (t−1)2

2!

)(
∂2f

∂xi∂xj
(x + th)hihj

)
dt

= 1
2!

∑n
i ,j=1

∂2f
∂xi∂xj

(x)hihj + R2(h, x)

where

R2(h, x) :=
n∑

i ,j ,k=1

∫ 1

0

(t − 1)2

2!

(
∂3f

∂xi∂xj∂xk
(x + th)hihjhk

)
dt

Recall the second mean value theorem for integral
∫ 1

0
f (t)g(t)dt = g(t0)

∫ 1

0
f (t)dt for some 0 < t0 < 1.

Hence, ∃t0, 0 < t0 < 1 such that

R2(h, x) =
n∑

i ,j ,k=1

(
∂3f

∂xi∂xj∂xk
(x + t0h)hihjhk

)∫ 1

0

(t − 1)2

2!
dt

︸ ︷︷ ︸
1
3!

.
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Theorem. (Divergence Theorem)

Let Ω be a bounded smooth domain in R3. The volume integral of
the divergence of a C 1−vector field F = (F1, F2,F3) equals the
total outward flux of the vector F through the boundary of Ω;

∫

Ω
divF(y)dy =

∫

∂Ω
F(y) · n(y)dSy .

where n is the unit outward normal vector on the boundary.

Proof. Assume that F ∈ [C 1(R3)]3 for simplicity.

• Key idea. From
∫ b
a f ′(x)dx = f (b)− f (a), it is easy to show

that the above identity is true if Ω can be decomposed of
cubes.

• Hence, the above identity is true if the domain Ω is an union
of cubes.

• Since the general smooth domain Ω can be viewed as a limit
of the union of cubes, this completes the proof.
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Theorem. (Stokes’s Theorem)

Let S be a open smooth surface S with the boundary as a smooth
contour C. The surface integral of the curl of a C1−vector field F
over the surface S is equal to the closed line integral of the vector
F along the contour C.

∫

S
CurlF · n(y)dSy =

∮

C
F (y) · dly .

Proof. Assume that F ∈ [C 1(R3)]3 for simplicity.

• Key idea. From
∫ b
a f ′(x)dx = f (b)− f (a), it is easy to show

that the above identity is true provided S is a rectangle.

• Hence, the above identity is true if the surface S can be
decomposed of rectangles.

• Since the general surface S can be viewed as a limit of
piecewise planer surfaces, this completes the proof.
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Pointwise and uniform convergence

Definition. The sequence of functions fk ∈ C ([0, 1]) is said to
converges pointwise to f if for each x ∈ [0, 1], fk(x) → f (x).
We say that the sequence of functions fk ∈ C ([0, 1]) converges
uniformly to f if supx∈[0,1] |fk(x)− f (x)| → 0.

• Let fk(x) = xk . Then fk converges pointwise to

f (x) =
0, 0 ≤ x < 1
1, x = 1

. But supx∈[0,1] |fk(x)− f (x)| = 1 for

all k. Hence, the convergence is not uniform.

• Let fn(x) =
∑n

k=0
(−1)kx2k+1

(2k+1)! . Then fn converges uniformly to

sin x in [0, 1].
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Inner Product space

Definition. Let V be a complex vector space. An inner product
on V is a mapping 〈·, ·〉 : V × V → C with the following properties
:

1. 〈αf + βg h〉 = α〈 f , h 〉+ β〈 g , h 〉 for all f , g , h ∈ V and
α, β ∈ C.

2. 〈 f , g 〉 = 〈 g , f 〉
3. 〈 f , f 〉 ≥ 0, and 〈 f , f 〉 = 0 ⇒ f = 0

Theorem The space V of the continuous functions f : [a, b] → C
forms an inner product space if we define

〈f , g〉 =

∫ b

a
f (x)g(x)dx .
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Inner Product in Rn.

• For x, y ∈ Rn, define inner product and norm:
〈x, y〉 =

∑n
j=1 x(j)y(j), ‖x‖ =

√
〈x, x〉.

• {e1, e2, · · · , en} is said to be an orthonormal basis of Rn if

1. Rn = span{e1, e2, · · · , en}
2. ‖ej‖ = 1, j = 1, · · · , n
3. 〈ej , ei 〉 = 0 if i 6= j .

• For example, e1 = (1, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0), ....

• If {e1, e2, · · · , en} is an orthonormal basis, then every x ∈ Rn

can be represented uniquely by x =
∑n

j=1〈x, ej〉ej

• If Vm = span{e1, · · · , em}, the element in Vm closest to x is

xm =
∑m

j=1〈x, ej〉ej with ‖x− xm‖ =
√∑n

j=m 〈x, ej〉2.
This useful dot product properties in Euclidean space can be
generalized to infinite dimensional spaces by introducing Hilbert
space.
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Inner Product space V = C [a, b]

Consider the space V of the continuous functions f : [a, b] → C
with the inner product 〈f , g〉 =

∫ b
a f (x)g(x)dx .

• Define the norm of f by ‖f ‖ =
√
〈 f , f 〉.

• Define the distance between f and g by d(f , g) = ‖f − g‖.
For f , g , h ∈ V , we have

• Cauchy-Schwarz inequality. |〈 f , g 〉| ≤ ‖f ‖‖g‖
• Minkowski inequality. ‖f + g‖ ≤ ‖f ‖+ ‖g‖
• Parallelogram law. ‖f + g‖2 + ‖f − g‖2 = 2‖f ‖2 + 2‖g‖2

• Pythagorean Theorem.

If 〈 f , g 〉 = 0, then ‖f + g‖2 = ‖f ‖2 + ‖g‖2
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Theorem. (Cauchy-Schwarz inequality)

If 〈 ·, · 〉 is an inner product in a real vector space V, then
|〈 f , g 〉| ≤ ‖f ‖‖g‖
Proof.

• Suppose g 6= 0. Let h = g
‖g‖ . It suffices to prove that

|〈 f , h 〉| ≤ ‖f ‖. (Why? |〈 f , g 〉| ≤ ‖f ‖‖g‖ iff |〈 f , h 〉| ≤ ‖f ‖.)
• Denote α = 〈 f , h 〉. Then

0 ≤ ‖f − αh‖2 = 〈f − αh, f − αh〉
= ‖f ‖2 − α 〈h, f 〉 − α 〈f , h〉+ |α|2
= ‖f ‖2 − |α|2

Hence, |α| = |〈 f , h 〉| ≤ ‖f ‖. This completes the proof.
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Theorem. ( Minkowski inequality)

‖f + g‖ ≤ ‖f ‖+ ‖g‖
Proof:

‖f + g‖2 = 〈f + g , f + g〉 = ‖f ‖2 + 〈f , g〉+ 〈g , f 〉+ ‖g‖2

≤ ‖f ‖2 + 2‖f ‖‖g‖+ ‖g‖2

= (‖f ‖+ ‖g‖)2
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