Riemann integrable

Let Q C R? be a bounded domain and let f : Q — R be a bounded
function.

e We enclose Q in some rectangle B = [a1, b1] X [a2, b2] and
extend f to the whole rectangle by defining it to be zero
outside of €.

e Let P be a partition of B obtained by dividing
31:X0<X1<--‘<Xn:b1 and
R=yo<y1<: - <ym=bx

P = {lxi,xit1] x lyj, ¥j41] : i=0,1,--- ,n—1, j=0,1,--- , m—1},

=subrectangle r

e Define the upper sum of f:

U(f,P):= Z sup{f(x,y) | (x,y) € R} x (volume of R)
ReP



Define the lower sum of f:

L(f,P):= ) inf{f(x,y) | (x,y) € R} x (volume of R)
ReP
Define the upper integral of f on Q by

/f =inf{U(f,P) : P is a partition of B}
and the |OS;/2V€r integral of f on Q by

/Qf =sup{L(f,P) : P is a partition of B}
We say th73t f is Riemann integrable or integrable if

/{;f:/Qf.

If f is integrable on €2, we denote

Lf—qu—Lf.



Theorem. (Taylor's Theorem for the case f € C3(R"))
Let f : R3 — R is of class C3. For x,h € R",
Je=x+tph, 0 < ty <1, such that

1 = 8
f(x+h) = x)—i—z + o . B0 ———(X)h;h;
ij=

Py (ax,axjaxk o)

Fx+h) — f(x) = [ Zf(x+ th)dt = [} 527, 9 (x+ th)hdt
=0 Jy S (x+ thyh 2 1)dt (e 9D — 1)
= >y | H(x h—det(x(thh)h)(t—l)dt}
=2 1ax( )h +R1(h x)

where Ry(h,x) = S0 o (1= ) (525 (x + th)hihy ) de
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Using 2 (—(t;!l)2> = (1 — t) and integration by part,

n 1 —1)? 2
Rilhx) = o1 2 (—51) (25 (x + thyhy) dt
2
2I ZI,J 1 8)(?8'; ( )h h + Rz(h X)

where

(t—1)2 O3f
Z / o (aXIa)gan(x—i—th)h,-hjhk) dt

ij,k=1

Recall the second mean value theorem for integral

/f to/f dt forsome 0 <ty < 1.

Hence, dtg,0 < tg < 1 such that

¢ f L(t—1)?
Rz(h,x) = Z <(X+toh)h,'hjhk> A ( o0 ) dt.
—

k=1 Oxi0xj0xi

D=



Theorem. (Divergence Theorem)

Let Q be a bounded smooth domain in R3. The volume integral of
the divergence of a C1—vector field F = (F1, Fp, F3) equals the
total outward flux of the vector F through the boundary of Q;

)y = | Fiy)-niy)as,.

o0

where n is the unit outward normal vector on the boundary.

Proof. Assume that F € [C1(R3)]? for simplicity.
e Key idea. From fab f'(x)dx = f(b) — f(a), it is easy to show
that the above identity is true if  can be decomposed of
cubes.

e Hence, the above identity is true if the domain € is an union
of cubes.
e Since the general smooth domain Q can be viewed as a limit
of the union of cubes, this completes the proof.
=



Theorem. (Stokes's Theorem)

Let S be a open smooth surface S with the boundary as a smooth
contour C. The surface integral of the curl of a Ct—vector field F
over the surface S is equal to the closed line integral of the vector
F along the contour C.

[D-CurlF-n(y)dS :jiF(y)-d/y.

Proof. Assume that F € [C1(R3)]3 for simplicity.
e Key idea. From f f'(x)dx = f(b) — f(a), it is easy to show
that the above |dent|ty is true provided S is a rectangle.

e Hence, the above identity is true if the surface S can be
decomposed of rectangles.

e Since the general surface S can be viewed as a limit of
piecewise planer surfaces, this completes the proof.
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Pointwise and uniform convergence

Definition. The sequence of functions f, € C([0, 1]) is said to
converges pointwise to f if for each x € [0, 1], fx(x) — f(x).
We say that the sequence of functions f, € C([0,1]) converges
uniformly to £ if supyejo 1y [fk(x) — £(x)[ — 0.

o Let fi(x) = x¥. Then f, converges pointwise to

0, 0<x«1
f(x) = 1 ox—1 . But sup,¢o,1) |fe(x) — f(x)| =1 for
all k. Hence, the convergence is not uniform.
o Let fi(x) =% 0 (;_l)(:—iwrl Then f, converges uniformly to
sinx in [0, 1].



Inner Product space

Definition. Let V be a complex vector space. An inner product
on V is a mapping (-,-) : V x V — C with the following properties

1. (af +Bgh)y=a(f,h)+ 3{(g,h) forall f,g,h € V and
a, e C.
2. (f,g)={(gf)
3. (f,fy>0,and (f,f)=0 = =0
Theorem The space V of the continuous functions f : [a, b] — C
forms an inner product space if we define

b
(Fg) = / F(x)g(x)dx.



Inner Product in R".

For x,y € R”, define inner product and norm:
(x,y) =21 xG)y (), Xl = /(% x).
{e1,e, -+ ,ep} is said to be an orthonormal basis of R” if
1. R" =span{ej, ez, - ,en}
2. lejl=1,j=1,---,n
3. <ej,e,-> =0if/ 751
For example, e = (1,0,---,0),e, = (0,1,0,---,0), ...
If {e1,e2,-- ,e,} is an orthonormal basis, then every x € R"
can be represented uniquely by x = >°7_; (x,e))e;
If Vi = span{e1,--- ,en}, the element in V,, closest to x is

: 2

Xm = 21 (x, €j)ej with [lx —xm[ = /3011, (x, )"
This useful dot product properties in Euclidean space can be
generalized to infinite dimensional spaces by introducing Hilbert
space.



Inner Product space V = (Ja, b]

Consider the space V of the continuous functions f:la,b] = C
with the inner product (f, g) f f(x

e Define the norm of £ by ||f]| = <f7 f>-
e Define the distance between f and g by d(f,g) = ||f — g]|.

For f,g,h € V, we have
e Cauchy-Schwarz inequality. |(f,g)| < [|f]| ]l
o Minkowski inequality. ||f + g|| < ||f]| + ||g]|
o Parallelogram law. ||f + g|* + [|f — g||> = 2||f|* + 2||g|]?
¢ Pythagorean Theorem.

If (f,g) =0, then [If +g|*=fl*+gl?
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Theorem. (Cauchy-Schwarz inequality)

If (-,-) is an inner product in a real vector space V), then
(.8 < IIfllllgl

Proof.

e Suppose g # 0. Let h= é”. It suffices to prove that
[CF, )< [IFIl. (Why? [(F, g)] < [IF[lllgll i [CF, )] < [IF]].)
e Denote o = (f, h). Then

0 < |If—ah|?=(f—ah f—ah)
= |IfIP = a(hf) —a(f, h) +|af?
= [If]I* — lof?

Hence, |a| = |(f, h)| < ||f]|. This completes the proof.
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Theorem. ( Minkowski inequality)
If +gll < [Ifll + llgll
Proof:
If+gl* = (F+gf+e =IfI>+(fg) +(gf) + gl

< 12 +21flllel + llgll?
= (I +llgln?
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