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Medical imaging techniques have advanced to improve our ability to 

visualize internal information of the human body .

Data Acquisition : 𝒃 𝒇 = 𝒈−𝟏

In CT& MRI, tomographic images are obtained  by  solving the inverse problem

𝒈 𝒙 = 𝒃 Image : 𝒙

Inverse Problems in Medical Imaging 

CT
𝒈 : Radon 

Transform

MRI
𝒈 : Fourier 

Transform

Ultrasound

Forward Model    Image            data



ill-posed inverse problems arising 
in medicine

Solve  𝒈 𝒙 = 𝒃

The goal is to provide high resolution images (e.g., CT & MRI), while optimizing data collection 
in terms of minimal time, cost-effectiveness, and low invasiveness.

This willingness leads to ill-posed inverse problem in the classical sense.

Forward model     image data

Reduce data 
as little as 
possible

Increase the 
resolution 
as high as 
possible



Linearization

Solve  𝒈 𝒙 = 𝒃

A ≈
Measured 
Data

𝒃𝒙

Medical image

Forward Matrix

• Matrix A is determined by the data sampling 
strategy 𝒃.

• The 𝑗 − 𝑡ℎ column of 𝐴 represents the change of 𝒃
due to the perturbation of 𝑗 − 𝑡ℎ element of 𝒙.

(# rows << # columns) 

Actual models of CT & MRI are somewhat non-linear (
𝝏𝒈

𝝏𝒙
depends on 𝑥) due to 

the interaction between the applied energy and tissue. Linearization is used 
for robust reconstruction and to guarantee repeatability. 



The goal is to reduce measurement data as little as possible 
while maintaining high resolution images.

✓ The goal is to make 
# 𝐨𝐟 𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧𝐬

# 𝐨𝐟 𝐮𝐧𝐤𝐧𝐨𝐰𝐧𝐬
as small as possible.

A ≈
Subsampled Data

𝒃𝒙

Medical image

Forward Matrix

Example: Reduce radiation dose in CT & data acquisition time in MRI.

This length is proportional to the radiation 
dose in CT & data acquisition time in MRI 

This length is proportional to 
the image resolution.

This linear system is an 
approximation because 
modeling error and 
measurement error 
always exist.



Example 1: Low-dose Dental Cone-Beam CT (1/3)
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A ≈
Sinogram Data

𝒃𝒙

CT image

Radon Transform𝒙

Complete FOV

The goal is to provide high-resolution imaging 
with the lowest possible radiation dose & minimal 
equipment and maintenance costs.

Limited FOV

Most Dental CBCTs use flat-panel 
offset detectors.



Dental CBCT

⋅ Circular cone-beam
⋅ Scan time: 8-24sec
⋅ FOV truncation
⋅ Offset detector
⋅ Price > $ 0.1 million
⋅ Low X-ray dose

MDCT

⋅ Helical cone-beam
⋅ Scan time< 1sec
⋅ No FOV truncation
⋅ No Offset detector
⋅ Price > $ 1 million
⋅ High X-ray dose

𝑣
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ℓ
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Dental CBCT

Example 1: Low-dose Dental Cone-Beam CT (2/3)

In dental CBCT, metal-induced artifacts are common.  Image 
reconstruction using low-dose truncated data tends to be severely 
degraded by various artifacts and noise. 

𝒙

𝒃



Example 1: Low-dose Dental Cone-Beam CT (3/3)

The presence of metal implants in CT scans causes severe discrepancy in 
the model assumption of the X-ray data, resulting in metal artifacts.

The challenging problem is getting rid of these artifacts.

[My Experience]
✓ Attempting to incorporate 

nonlinearity into the model 
actually tends to do more 

harm than good. 
✓ Repeatability is important in 

medicine.



Example 2: Compressed Sensing MRI  (1/3)

A ≈
k-space Data

𝒃𝒙

MRI image

Fourier Transform

𝒙

𝒃 : under-sampled data 

violating Nyquist criterion 𝒃𝒇𝒖𝒍𝒍 : fully sampled data 

satisfying Nyquist criterion

MRI has limited clinical application due to the long data collection time. 

The goal is to reconstruct 𝒙 from minimally sampled data 𝒃 that violate the 
Nyquist criterion .

under-sampled



Example 2: Undersampled MRI  (2/3)

full sampling uniform 
subsampling
of factor 2

uniform 
subsampling of 
factor 2 with added 

some low frequencies

uniform 
subsampling 
of factor 4,

uniform 
subsampling of 
factor 4 with

added low 
frequencies

Inverse Fourier 
Transform

According to the Poisson summation formula, the inverse Fourier 
transform of the uniformly subsampled data with factor 4 provides an 
four-folded image. Unfolding is a highly non-linear problem that is 

difficult to deal with. This is why random sampling patterns were used for 
accelerated MRI strategies (Donoho, Candes, Tao, Rustig).



Example 2: Undersampled MRI (3/3)

For fetal MRI, a fast MRI is needed to deal 

with motion artifacts.

Inverse 
Fourier 
Transform

A full sampling that meets the Nyquist criteria 
can take approximately 10-30 minutes.

Due to the long scan time, the reconstructed 
image is severely degraded by motion artifacts.

Normally, the fetus is always 
moving. Hence, full sampling has a 
fundamental limitation of being 
contaminated with motion artifacts.

fetal MRI



16 Channel EIT system

Example 3: Electrical Impedance Tomography (1/3)

A ≈

Data: 𝟏𝟎𝟒 = 𝟏𝟔 ×
𝟏𝟔−𝟐

𝟐
independent data

𝒃𝒙

Lung EIT image

Sensitivity matrix

Lung EIT reconstruction 𝒙 =

This is a very nonlinear ill-posed problem because we have no control over the 
path of the injection current, unlike CT & MRI. It is difficult to provide high-
resolution images due to severe modeling errors and boundary uncertainties.

𝟏𝟔𝟑𝟖𝟒

𝟐
𝟎

𝟖

𝟏𝟐𝟖

𝟏
𝟐

𝟖



𝟐
𝟎

𝟖

A=
𝝏𝒃

𝝏𝒙
 (sensitivity matrix)

𝟏𝟔𝟑𝟖𝟒

≈

𝒙 b

Example 3: EIT (2/3)

The goal is to provide useful images, 
not high resolution images.

.



Example 3: EIT (3/3)

✓ When many electrodes are attached to obtain a 
lot of data (Neuman-to-Dirichlet map) and the 
distance between the electrodes is narrow, the 

current flows only near the boundary, so the NtD
data cannot reflect the internal conductivity 

distribution.

In my opinion, more data from many electrodes does not 
help with better image reconstruction due to various 

uncertainties and modeling errors.

So far, four-pair electrode bioimpedance
has been commercially successful.



How to solve 

ill-posed inverse problems 
in medicine 

# of equations

# of unknowns (# of pixels)

𝒔𝒖𝒃𝒔𝒂𝒎𝒑𝒍𝒆𝒅 𝒅𝒂𝒕𝒂

Due to the under-sampled data relative to 
the resolution of the solution, it is 

necessary to impose specific prior 
knowledge of the expected solutions. 

≈



How to solve the ill-posed problem 𝑨𝒙 = 𝒃?

𝒙

Example 2: Under-sampled MRI model

full samplingSubsampling 

(28% of full 

sampling)

𝒙
𝒙

𝒃

Inverse Fourier 
Transform

Inverse Fourier 
Transform

Using a minimally sampled data 𝒃, we want to 
reconstruct an image 𝒙 similar to that obtained 
from the fully sampled k-space data 𝒃full.

𝒃full



𝟏

𝐜
||𝒙 − 𝒙′|| ≤ ||𝑨𝒙 − 𝑨𝒙′|| ≤ 𝒄 ||𝒙 − 𝒙′||, ∀ 𝒙, 𝒙′ ∈ 𝑴

Solve 𝑨𝒙 ≈ 𝒃
subject to  𝒙 ∈ 𝑴

To convert an ill-posed problem into a well-posed one, 

1) need a suitable data sampling strategy involving 𝐴 

2) choose a highly reduced solution space (or manifold), denoted by 𝑴,

so that these choices allow to satisfy the 𝑴-Restricted Isometry Property (RIP) condition:

𝑴

{𝒙: 𝑨𝒙 = 𝒃} {𝒙′: 𝑨𝒙′ = 𝒃′}

𝒙 𝒙′

A necessary condition for solving the ill-posed problem 𝑨𝒙 = 𝒃

Image 
Prior

(Hyun etal 2021, 
Candes & Tao 2005)



Solve 𝑨𝒙 ≈ 𝒃
subject to  𝒙 ∈ 𝑴

What does 𝑀-RIP condition mean?

𝟏

𝐜
||𝒙 − 𝒙′|| ≤ ||𝑨𝒙 − 𝑨𝒙′|| ≤ 𝒄 ||𝒙 − 𝒙′||, ∀ 𝒙, 𝒙′ ∈ 𝑴

𝑴

{𝒙: 𝑨𝒙 = 𝒃}
{𝒙′: 𝑨𝒙′ = 𝒃′}

𝒙 𝒙′

Condition for solving the ill-posed problem 𝑨𝒙 = 𝒃

||𝒃 − 𝒃′|| 

The Euclidean distance between data (||𝒃 − 𝒃′||) is comparable to the 
distance between images (||𝒙 − 𝒙′||) within the solution manifold 𝑴 . 



Example 2 (Undersampled MRI with uniform subsampling of factor 4);

We cannot solve 𝐴𝑥 = 𝑏  

because ∃ 𝒙, 𝒙′ ∈ 𝑴 s.t.  ||𝒙 − 𝐱′|| > 𝟎 = ||𝑨𝒙 − 𝑨𝒙′||.

If the sampling strategy (involving A) does not 
satisfy M-RIP, there is no way to solve 𝐴𝑥 = 𝑏 .

This uniform subsampling does NOT satisfy 𝑴-RIP:  𝟏

𝐜
||𝒙 − 𝒙′|| ≤ ||𝑨𝒙 − 𝑨𝒙′|| ≤ 𝒄 ||𝒙 − 𝒙′||, ∀ 𝒙, 𝒙′ ∈ 𝑴

𝒙† = 𝐀† 𝐛 ∉ 𝑴𝒙′ ∈ 𝑴𝒙 ∈ 𝑴 𝑨𝒙 = 𝑨𝒙′ = 𝑨𝒙†

uniform 
subsampling of 
factor 4



𝑴

As shown in the figure below, it is not 
possible to know where the small tumor is 

with uniformly undersampled data.

𝒙† = 𝐀† 𝐛 ∉ 𝑴

𝒙′ ∈ 𝑴

𝒙 ∈ 𝑴

The null space {𝒙: 𝑨𝒙=𝒃} 
is determined by the 

sampling strategy.

uniform 
subsampling 
of factor 4

This sampling strategy does not 

satisfy the 𝑴-RIP because there 

exist 𝒙 & 𝒙′ ∈ 𝑴 s.t.

𝟎 < ||𝒙 − 𝒙′|| & ||𝑨𝒙 − 𝑨𝒙′|| = 𝟎



What is the solution space 𝑴?

What kind of prior information about the solution 𝒙 constitutes 𝑴? 

Linear regression 
(PCA, truncated Fourier, 
Wavelet, Framelet, etc)

Piece-wise linear regression
Sparse Sensing (Total Variation, 

dictionary learning, sparse representation 
using wavelet, Framelet, etc)

Non-Linear regression 
(deep learning)

How to solve the ill-posed problem A𝑥 = 𝑏?



Regularized Data Fitting 
vs 

Deep Learning
A

x

b=

How can we impose prior 

information of target images?



Deep learning (Group Fidelity) 

𝒇 = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒇∈𝐍𝐞𝐮𝐫𝐚𝐥 𝐍𝐞𝐭𝐬

෍

𝐧

||𝒙 𝒏 − 𝒇(𝒃 𝒏 )||𝟐

(𝒙 𝒏 , 𝐛 𝒏 ): 𝒏 = 𝟏, ⋯ , 𝑵  ; training data

Regularized data fitting (Single Fidelity) 

𝐱 = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒙

෍

𝐧

||𝑨𝒙 − 𝒃||𝟐 + 𝝀 𝑹(𝒙)

𝑹(𝒙) is regularization term such as

• 𝑹 𝒙 = || 𝛻𝑥||ℓ1

• 𝑹 𝒙 = || 𝒉||ℓ1
,   𝒙 = 𝑫𝒉

Solve 𝑨𝒙 ≈ 𝒃 subject to  𝒙 ∈ 𝑴 Find 𝒇: 𝒃 → 𝒙 ∈ 𝑴 s.t   𝑨𝒇 𝒃 = 𝒃

Two different approaches to impose 

prior information of target images

𝒇 𝒃 = 𝒙

When f is learned, we get the solution directly from 
the input data.



A
x

b=

𝒇 𝐛 = 𝐖𝐡, 𝐡 = 𝐚𝐫𝐠𝐦𝐢𝐧
𝐡

||𝑨𝑾𝐡 − 𝐛||
ℓ𝟐
𝟐 + 𝝀||𝐡||ℓ𝟏

data fidelity

Image Prior 

Compressive sensing (CS) methods have shown remarkable 
performance in image denoising.  
But CS methods have limitations in medical imaging where small 
anomalous details are more important than overall features.

=
𝒘𝟏,𝟏 ⋯ 𝒘𝟏,𝒌

⋮ ⋱ ⋮

𝒘𝟐𝟓𝟔𝟐,𝟏 ⋯ 𝒘𝟐𝟓𝟔𝟐,𝒌

𝒉𝟏

⋮
𝒉𝒌

Basis/axis 

Regularization

𝝀 is a regularization 
parameter that controls 
the trade-off between 
data fidelity and the 
regularity enforcing the 
sparsity of h.

𝒚

The term ||h||ℓ1 is used to promote the sparse representation..

hope

Regularized Data Fitting 

𝒙
𝒙

𝒛 = 𝐀† 𝐛



𝒙 = 𝐚𝐫𝐠𝐦𝐢𝐧
𝐱

||𝒙 − 𝒙†||ℓ𝟐
𝟐 + 𝝀||𝛁𝒙||ℓ𝟏

For example, Total Variation regularization method may not 
selectively preserve small features because it penalizes uniformly 
based on image gradient, regardless of image structure.

TV removes everything within the 

shrinkage interval without exception. 
+𝝀𝜶

−𝝀𝜶

𝒙† = 𝐀† 𝐛
True solution

TV 
regularization 



• DL approach can selectively preserve fine features.

Deep learning (Group Fidelity) 

𝒇 = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒇∈𝐍𝐞𝐮𝐫𝐚𝐥 𝐍𝐞𝐭𝐬

෍

𝐧

||𝒙 𝒏 − 𝒇(𝒃 𝒏 )||𝟐

(𝒙 𝒏 , 𝐛 𝒏 ): 𝒏 = 𝟏, ⋯ , 𝑵  ; training data

𝒙 𝟏 , ⋯ , 𝒙(𝑵) ⊂ 𝑴 ⊂

Training data 

Learning

P𝐢𝐱𝐞𝐥-dimensional 
Euclidean space



𝒙 𝟏

𝒙(𝑵)

𝒙 𝒏

27

Training data are grayscale level images

What is 𝑴 ?  

Medical image (e.g., 256 grayscale level, 300 × 300 size) can be regarded as a point 
𝐱 = 𝑥1, ⋯ , 𝑥3002 in p𝐢𝐱𝐞𝐥-dimensional Euclidean space,  where 𝑥𝑗 (𝑗-th axis 

coordinate) corresponds to the grayscale intensity at the 𝑗-th pixel.

𝒙 𝟏 , ⋯ , 𝒙(𝑵) ⊂ 𝑴 ⊂ 𝟎, ⋯ , 𝟐𝟓𝟔 𝟑𝟎𝟎𝟐

256 grayscale level Number of pixels Training data 



28

What is 𝑴 ? Even if tens of thousands of tomographic 

images are collected every day for 1000 years, it occupies a 

very small fraction of the pixel-dimensional Euclidean space.

(much less than 0.000000000000000000001% )

𝑴

Challenging question: Can we find 𝑴 from data samples? 

# of all possible images = 𝟐𝟓𝟔𝟑𝟎𝟎×𝟑𝟎𝟎 ≈ ∞
(256 grayscale level, 300 × 300 pixel size) (much greater than # of atoms in universe)



Forward matrix  ≈

Input 
Data

b𝒙

• Many problems are ill-posed because the solution space is too large .

Let us say that we have the following disentagled representation:

𝑴 = 𝑮 𝒉 : 𝒉 ∈ 𝑲 with 𝑲 ⊂ 𝑹𝒌.

G 𝐡 = 𝒙
Generator
/decoder

Latent 
variable

𝒉𝟏

𝒉𝟑
𝒉𝟐 𝒉𝟓

𝒉𝟒

G(𝐡)

If 𝒌 ≤ # rows , the problem becomes well-posed.

The latent variables can be regarded 
as strings connected to the marionette. 
The generator can be seen as realizing 
the movement of the marionette by 
pulling the strings.



𝑨𝒙 = 𝒃 is nonlinear problem  

if dim (span{𝝏𝒋𝑮 𝒉 : 𝒉 ∈ 𝑲}) > # 𝒓𝒐𝒘𝒔 .

A

x

b
=

𝑴 = 𝑮 𝒉 : 𝒉 ∈ 𝑲Solve   𝑨𝒙 ≈ 𝒃 subject to  𝒙 ∈ 𝑴

Chang Min Hyun, Seong Hyeon Baek, Mingyu Lee, Sung Min Lee, Jin Keun Seo, Deep Learning-Based Solvability 

of Underdetermined Inverse Problems in Medical Imaging, Medical Image Analysis

𝝏𝒋𝑮 𝒉

Tangent vectors on M



𝒇: 𝒃 → 𝒙 is nonlinear if  dim (span{𝜕𝑗𝐺 ℎ : ℎ ∈ 𝐾}) > # 𝑟𝑜𝑤𝑠 .

• 𝒃 = 𝐀𝒙 & 𝐱 = 𝐆(𝐡) → ∀𝒉 ∈ 𝑲, 𝒇 𝐀𝐆 𝐡 = 𝐆 𝐡

• Assume 𝒇: 𝒃 → 𝒙 is linear to induce a contradiction. Then 𝜵𝒇(⋅) is a 

constant matrix &  

Since 𝐝𝐢𝐦 𝐄𝐢𝐠𝐞𝐧𝟏(𝛻𝑓𝐀) ≤ 𝐝𝐢𝐦 𝐑𝐚𝐧𝐠𝐞 𝑨 ≤ # 𝒓𝒐𝒘𝒔, 

this contradicts to the assumption ( dim(𝑠𝑝𝑎𝑛{𝜕𝑗𝐺(ℎ): ℎ ∈ 𝐾}) > #𝑟𝑜𝑤𝑠).

Message:  The degree of nonlinearity depends on # sampling of b  &
the degree of bending of the solution manifold 𝑴𝒊𝒎𝒂𝒈𝒆 .

Proof:  

𝛻𝑓𝐀 𝛁𝐆(𝐡) = 𝛁𝐆(𝐡)  for all h ∈ K.
𝝏𝒋𝑮 𝒉

Hence, 𝝏𝒋𝑮 𝒉 ∈ 𝐄𝐢𝐠𝐞𝐧𝟏(𝛻𝑓𝐀) , the eigenspace of 𝛻𝑓𝐀 corresponding to the eigenvalue 1.

𝒇 𝒃  is the solution of 𝑨𝒙 = 𝒃



M is highly curved. Why?  
Assume 𝑀 = x(𝜃): 𝜃 ∈ 0,2𝜋 where 𝒙(𝜽)

denotes the 𝜽 degree rotated image of 𝒙 𝟎 .

Let 𝐕 = 𝐒𝐩𝐚𝐧{𝒙 𝟎 , 𝒙
𝝅

𝟏𝟖 , ⋯ , 𝒙 𝟐𝝅 } . Consider the projection of 𝒙
𝝅

𝟑𝟔 onto 𝐕.

𝒙 𝟎

𝒙 𝟏

𝐏𝐕 𝒙 𝟎.𝟓 ≈
𝟏

𝟐
(𝒙 𝟎 + 𝒙 𝟏 ) destroys the main characteristics of 𝒙 𝟎.𝟓 .

Linear methods (PCA, truncated 

Fourier transform) may be unable to 
deal with the highly curved 
solution manifold.



As the missing data increases, the nonlinearity of inpainting increases.

The degree of nonlinearity depends on # sampling of data b 

& the degree of bending of the solution manifold.

The highly underdermined problems are highly nonlinear!

✓ This is why it is difficult to solve highly underdetermined problem 𝐴𝑥 = 𝑏 by 

conventional linear or piecewise-linear approaches.

✓ Deep learning techniques appear to handle nonlinear problems.

A

x

b
=



𝒇 = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒇∈𝐍𝐞𝐮𝐫𝐚𝐥 𝐍𝐞𝐭𝐬

෍

𝐧

||𝒙 𝒏 − 𝒇(𝒃 𝒏 )||𝟐

DL performance depends not only on the neural network architecture, but also on 

the sampling strategy & the quality and quantity of training datasets.

Learn 𝒇 from training data (x n , b n ): n = 1, ⋯ , N by: 

Deep Learning Approach



DL performance depends on 

the sampling strategy. 

The necessary condition for learning 𝒇 is that

𝒇 𝑨𝒙 = 𝒙 ∀ 𝒙 ∈ 𝐈𝐦𝐚𝐠𝐞 𝐌𝐚𝐧𝐢𝐟𝐨𝐥𝐝.

Use training data  𝒙 𝒏 : 𝒏 = 𝟏, ⋯ , 𝑵

to get  prior knowledge.

M-RIP condition



If we use uniform subsampling with factor 4, 

it is difficult to learn 𝒇 𝒔. 𝒕. 𝒇 𝐀𝒙 = 𝐱 ∀ 𝐱 ∈ 𝐈𝐦𝐚𝐠𝐞 𝐌𝐚𝐧𝐢𝐟𝐨𝐥𝐝 

✓ Why? It fails to satisfy M-RIP condition.

✓DL is NOT a magic. 

Even deep learning is confused about which of the 
two (𝒙 or 𝒙′) to restore.

Undersmapled MRI 

𝒃 = 𝑨𝒙 = 𝑨𝒙′

A

Both 𝒙 and 𝒙′ have 
the same data 𝒃.

𝒙 𝒙′𝐀† 𝐛



Fourier 
Transform

Fourier 
Transform

Adding one line

✓ Adding a single phase encoding line can deal with position uncertainty 
to unfold the folded image.

𝐀† 𝐛Sampled  data: 𝐛

A small change to the sampling strategy can lead to a 
dramatic improvement in learning.

Deep 
Learning 

NOT learnable 

Learnable 

uniform 
subsampling 
of factor 4



DL performance depends on the

quality of training datasets. 

Deep learning-based Denoising 

𝒇 = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒇∈𝐍𝐞𝐮𝐫𝐚𝐥 𝐍𝐞𝐭𝐬

෍

𝐧

||𝒙 𝒏 − 𝒇(𝒛 𝒏 )||𝟐

𝒇

𝒛:  Noisy input 𝒙:  Denoised output 



𝒇 =

𝒇 = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒇∈𝐍𝐞𝐮𝐫𝐚𝐥 𝐍𝐞𝐭𝐬

෍

𝐧

||𝒙 𝒏 − 𝒇(𝒛 𝒏 )||𝟐

Park, H. S., Baek, J., You, S. K., Choi, J. K., & Seo, J. K. (2019). Unpaired image denoising using a 

generative adversarial network in X-ray CT. IEEE Access, 7, 110414-110425.

This training samples 

𝐱 𝒏 : 𝒏 = 𝟏, ⋯ , 𝑵  

consist of one disk 
and one rectangle 
with different sizes 
and positions

The test image contains a anomaly inside 
the disk, but training data do not contain 
any anomaly inside disk and rectangle.

Consider image denoising problem: 

Training Sample 1 

This f can successfully remove noises on the test image but also remove small anomaly.



𝒇 =

𝒇 = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒇∈𝐍𝐞𝐮𝐫𝐚𝐥 𝐍𝐞𝐭𝐬

෍

𝐧

||𝒙 𝒏 − 𝒇(𝒛 𝒏 )||𝟐

This training 

samples ൛

ൟ

𝑥 𝑛 : 𝑛 =

1, ⋯ , 𝑁  contains 

small anomaly 
inside rectangle.

The test image contains anomaly inside the 
disk, but training data do not contain the 
anomaly inside disk.

Learn Image denoising

Training Sample 2:

This f can successfully remove noises on the test image while preserving the small feature.



𝒇 = ?

Training 
Data 1

Training 
Data 2

Training 
Data 3

Impact of Training Data (𝐳 𝒏 , 𝐱 𝒏 ): 𝒏 = 𝟏, ⋯ , 𝑵

No small 
anomaly

small 
anomaly 
inside 
rectangle

small 
anomaly 
inside disk



An important open question is how nonlinear 

dimensionality reduction can be done .



5 Latent variables

𝒉𝟏

𝒉𝟑

𝒉𝟐 𝒉𝟓
𝒉𝟒

Ψ(𝐡)

Ψ 𝐡 =
Generator
/decoder

Latent 
variable

𝐡 = (ℎ1, ⋯ , ℎ5)

A challenging problem is how to find a 
low-dimensional representation from the training data.

Can we find a 
Disentangled expression 
by extracting the 
underlying explanatory 
axis?

??



AutoEncoder (AE)

𝑳𝒐𝒔𝒔𝑨𝑬 𝚿, 𝚽 = 𝑬𝒙~𝒑𝒅𝒂𝒕𝒂 𝒙 𝚿 ∘ 𝚽 𝒙 − 𝒙 𝟐

✓ It aims to generate the data manifold 𝑀 = { Ψ h ∶ h ∈ 𝐾}
by learning `hierarchical disentangled representation’. 

✓ AE can be viewed as a non-linear extension of PCA.

AEs do their best to 

learn (𝚽, 𝚿) with as 
little reconstruction loss 
as possible, rather than 
trying to organize the 
latent space well for 
generative purposes. 

AEs lacks the generalized capability  
due to non-regularized latent space.  
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✓ VAEs serve somewhat as a generative model. 
✓ In VAE, the encoded latent variables are compressed and 

normalized to a normal distribution, to enable the 
generative process. 

Variational AE (VAE)

AE encodes the input as 
a single point, whereas 
VAE encodes the input 

as a distribution over the 
latent space.



Electrical Impedance Tomography

Application of VAE

𝟏𝟔𝟑𝟖𝟒 pixels

✓ We use VAE to disentangle lung EIT images, so that lung EIT images are 
generated by 𝒙 = 𝜳 𝒉 , 𝒉 ∈ 𝑹𝟖. 

✓ To solve A𝒙 = 𝒃, instead of looking for images with 𝟏𝟔𝟑𝟖𝟒 pixels, we only 
need to find 8 latent variables. 

The ill-posed problem (16384 unknowns with 112 

equations) is turned into a well-posed problem 
(8 unknowns with 112 equations).

Map from EIT data to the latent variables

𝚿 : decoder in VAE

𝟏𝟏𝟐



Ψ 𝐡𝐢 Ψ 𝐡𝒋

𝐡 = (h1, h2, ⋯ , h8 )

Latent variables

𝚿(𝐡)

Using VAE, we represent lung impedance images (𝟏𝟔𝟑𝟖𝟒 pixels) 

by 8 latent variables.

EIT lung ventiltional shape deformations

J.K. Seo, K.C. Kim, A. Jargal, K. Lee and B. Harrach, A learning-based method 
for solving ill-posed nonlinear inverse problems: a simulation : a simulation 
study of Lung EIT," SIAM Journal on Imaging Sciences (2019) 



Unfortunately, for high-dimensional image, 

VAE has limitations in that the image is 

blurred and small details are lost. 

MRI and CT images
(high dimensional data: 

512 × 512 × 400 voxels)



✓ Generative Adversarial Networks(GANs) have 
shown remarkable performance in generation of 
various realistic images. 

✓ However, GANs have difficulties to learn 
disentangled representation.

✓ VAEs learns a bidirectional mapping(encoder and 
decoder), while GANs learn somewhat the 
unidirectional mapping (decoding) in high 
dimensional medical images

Challenging Issue: Low-dimensional 

representation of MRI and CT images

G
Discrminator

G(z)

x

z

𝑳𝑮𝑨𝑵 𝑮, 𝑫 = 𝑬𝒙~𝒑𝒅𝒂𝒕𝒂 𝒙 [𝐥𝐨𝐠 𝐃 𝐱 ] + 𝑬𝒛~𝒑𝒛 𝒛 [𝐥𝐨𝐠 (𝟏 − 𝐃 ∘ 𝑮 𝐳 ]

The superiority of GANs in 
entertainment-related fields can be a 

disadvantage in the medical field, as it 
tends to reject the presence of small 
anomalies that are rarely seen, due to 

the strong punishment of the 
discriminator.



Deep Learning-based 3D segmentation.

𝒇( ) =
Input :  𝒛 Output :  𝐱

Target error : 0.2 mm

3D CBCT image

The Last Example: low-dose Cone Beam CT



Low Dose Dental CBCT

CBCT images are affected by “offset detector, FOV truncation, low 
X-ray dose“ and metal induced beam hardening,
resulting in significant image noise and artifacts.



52

In dental CBCT, metal 
artifacts are common. Metal artifacts

• Modeling error: The presence of highly attenuating materials such as 
metallic objects complicates reconstruction techniques by  violating 
the forward model assumption of the sinogram data being equal to 

the Radon transform of an image.

Even with modern deep learning techniques, it is 
difficult to perform accurate tooth segmentation on 
the metal-artifacts contaminated image.



The key idea to overcome the difficulty is to get a good 
prior knowledge that is obtained by generating  a clean

panoramic image from the noisy CBCT image.

53

The panoramic image is not much affected by metal-related artifacts.

2D shape of 
tooth can be 
seen.

Metal-artifact 
contaminated image

This image was obtained by 
integrating along the normal 
direction of the dental arch.

This integration cancels out metal 
artifacts. 
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This 2D segmentation is used to find accurate 3D tooth ROIs and 

identify individual teeth.

Get prior knowledge of 3D teeth from 2D tooth 
segmentation obtained from panoramic images.
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2D tooth segmentation provides a deep learning friendly 
environment for 3D tooth segmentation.

Tae Jun Jang, Kang Cheol Kim, Hyun Cheol Cho, 
and Jin Keun Seo, A fully automated method for 
3D individual tooth identification and 
segmentation in dental CBCT, IEEE Transactions 
on Pattern Analysis and Machine Intelligence 
(2021)
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Comment 1: The aforementioned tooth segmentation enables 

the fusion of CBCT and intraoral scans, eliminating the 
cumbersome procedure of conventional impressions.



AI-based Digital Dentistry to improve workflow

DLs appear to overcome limitations of existing 

mathematical methods in handling various 

complex problems in segmentation.



Hyun Cheol Cho, Siyu Sun, Chang Min Hyun, Ja-Young Kwon, Bukweon Kim, Yejin
Park, Jin Keun Seo, Automated ultrasound assessment of amniotic fluid index using 
deep learning, Medical Image Analysis (2021)

Kim, Bukweon; Kim, Kang Cheol; Park, Yejin; Kwon, Ja-Young; Jang, 
Jaeseong; Seo, Jin Keun*, Machine-learning-based Automatic 
Identification of Fetal Abdominal Circumference from Ultrasound 
Images, Physiological Measurement (2018)

Comment 2: Paradigm shift in Segmentation  

✓ Automated fetal biometric 
measurements for fetal ultrasound 
have been very difficult tasks for 
over 30 years, but recently some of 
these problems have been solved 
with DLs!
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sh
a
d
o
w

in
g
 a

rt
if
a
ct

s 

Prior (x)

✓ DLs can learn prior anatomical knowledge to analyze 
even heavily distorted images.

✓ DLs capture the spatial relationships between pixels 
to figure out local and global interconnections.

Why did the DL methods achieve remarkable performance 

in image segmentation tasks?



Thank you! 

✓ Medical imaging is in fact experiencing a paradigm shift due to a 

marked and rapid advance in deep learning techniques. 

✓ However, there is a tremendous lack of a rigorous mathematical 

foundation which would allow us to understand the reasons why 

deep learning methods perform that well. 

✓ Despite the lack of rigorous analysis in deep learning, recent rapid 

advances indicate that DL methodologies will see continued 

improvements in performance as training data and experience 

accumulate over time.
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