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Inverse Problems in Medical Imaging

Medical imaging techniques have advanced to improve our ability to

visualize internal information of the human body .

In CT& MRI, tomographic images are obtained by solving the inverse problem

g (x) = b Image : X

Forward Model Image data

Data Acquisition b




ill-posed inverse problems arising
in medicine

Solve g (x ) —

Forward model image data

l Reduce data

Increase the f as little as
resolution ‘ possible
as high as

possible

The goal is to provide high resolution images (e.g., CT & MRI), while optimizing data collection
in terms of minimal time, cost-effectiveness, and low invasiveness.

-

This willingness leads to ill-posed inverse problem in the classical sense




Linearization

Actual models of CT & MRI are somewhat non-linear (Z—i depends on x) due to

the interaction between the applied energy and tissue. Linearization is used
for robust reconstruction and to guarantee repeatability.

(# rows << # columns) X b

) =
NS
Forward Matrix

Measured
Data

« Matrix A is determined by the data sampling

strategy b.
« The j —th column of A represents the change of b

due to the perturbation of j — th element of x.
Medical image



The goal is to reduce measurement data as little as possible
while maintaining high resolution images.

# of equations

v' The goal is to make as small as possible.

# of unknowns

Example: Reduce radiation dose in CT & data acquisition time in MRI.

fN This length is proportional to the radiation
~~ dose in CT & data acquisition time in MRI
|V

Forward Matrix Subsampled Data

This linear system is an
approximation because
modeling error and
measurement error
always exist.

This length is proportional to
| the image resolution.

Medical image



Example 1. Low-dose Dental Cone-Beam CT (1/3)

The goal is to provide high-resolution imaging
with the lowest possible radiation dose & minimal X b
equipment and maintenance costs.

Radon Transform

~
- v. %

CT image

—1
Most Dental CBCTs use flat-panel
offset detectors.



Example 1: Low-dose Dental COone-Beam CT (2/3)

In dental CBCT, metal-induced artifacts are common. Image
reconstruction using low-dose truncated data tends to be severely
degraded by various artifacts and noise.

Dental CBCT MDCT

- Circular cone-beam - Helical cone-beam

-Scan time: 8-24sec - Scan time< 1sec

- FOV truncation - No FOV truncation
- Offset detector - No Offset detector
- Price > $ 0.1 million - Price > $ 1 million

- Low X-ray dose - High X-ray dose




Example 1: Low-dose Dental Cone-Beam CT (33

The presence of metal implants in CT scans causes severe discrepancy in
the model assumption of the X-ray data, resulting in metal artifacts.
The challenging problem is getting rid of these artifacts.

[My Experience]

v Attempting to incorporate
nonlinearity into the model
actually tends to do more

harm than good.
v' Repeatability is important in
medicine.

-
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Example 2: Compressed Sensing MRI (1/3)

MRI has limited clinical application due to the long data collection time.

The goal is to reconstruct x from minimally sampled data b that violate the
Nyquist criterion .

b

X
~

Fourier Transform

under-sampled

k-space Data

MRI image

b : under-sampled data
violating Nyquist criterion

bsyy : fully sampled data
satisfying Nyquist criterion



Example 2: Undersampled MRI (2/3)

According to the Poisson summation formula, the inverse Fourier

. transform of the uniformly subsampled data with factor 4 provides an
Inverse Fou”erf four-folded image. Unfolding is a highly non-linear problem that is

Transform difficult to deal with. This is why random sampling patterns were used for

accelerated MRI strategies (Donoho, Candes, Tao, Rustig).

. : : if uniform
full sampling uniform uniform UNEorm subsampling of

subsampling subsampling of subsampling factor 4 with

of factor 2 factor2®with added of factor 4, added IoW
some low frequencies frequencies




Example 2: Undersampled MRI 3/3)

For fetal MRI a fast MRI is needed to deal
with motion artifacts.

A full sampling that.meets the Nyqqlst criteria Due to the long scan time, the reconstructed
can take approximately 10-30 minutes. , . : .
image is severely degraded by motion artifacts.

Inverse
Fourier
Transform

fetal MRIy

Normally, the fetus is always
moving. Hence, full sampling has a
fundamental limitation of being
contaminated with motion artifacts.

" ! /4
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Example 3: Electrical Impedance Tomography (1/3)

This is a very nonlinear ill-posed problem because we have no control over the
path of the injection current, unlike CT & MRI. It is difficult to provide high-
resolution images due to severe modeling errors and boundary uncertainties.

16384 X b |
| 16 Channel EIT system
~ | -

.4
Sensitivity matrix

208

Data: 104 = 16 x %

independent data

. Lung EIT image
Lung EIT reconstruction X —

128
N
-




Example 3: EIT (2/3)

The goal is to provide useful images,
not high resolution images.
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Example 3: EIT (3/3)

In my opinion, more data from many electrodes does not
help with better image reconstruction due to various

uncertainties and modeling errors.

v" When many electrodes are attached to obtain a
lot of data (Neuman-to-Dirichlet map) and the
distance between the electrodes is narrow, the

current flows only near the boundary, so the NtD
data cannot reflect the internal conductivity
distribution.

So far, four-pair electrode bioimpedance
has been commercially successful.

InBody

See what you’re made of




How to solve

Ill-posed inverse problems
in medicine

Xo
we“‘éa
e
A A A 3090(
&%
o ¥
# of equations A ~ b ?\edo@
A\ 4 A 4
subsampled data
Due to the under—sampled dat.a rel.ative to # of unknowns (# of pixels)
the resolution of the solution, it is
necessary to impose specific prior
knowledge of the expected solutions.
v




How to solve the ill-posed problem Ax —_ b?

Example 2: Under-sampled MRI model

b Using a minimally sampled data b, we want to
reconstruct an image x similar to that obtained
from the fully sampled k-space data bg,.

Subsampling full sampling

(28% of full

samﬁling)

‘ Inverse Fourier ‘e e Inverse Fourier
8
Transform . ‘oo, Transform




A necessary condition for solving the ill-posed problem Ax =Db

To convert an ill-posed problem into a well-posed one,
1) need a suitable data sampling strategy involving A

2) choose a highly reduced solution space (or manifold), denoted by M,

(Hyun etal 2021,

so that these choices allow to satisfy the M-Restricted Isometry Property (RIP) condition: Candes & Tao 2005)

Image

1
cllx—x'|| < ||[Ax —Ax'|| < c||x — x|, Vxx' €M & pioy

{x:Ax = b}

sove Ax = b
subjectto X € M




Condition for solving the ill-posed problem Ax = b

What does M-RIP condition mean?

1
cllx—x'|| < |[Ax —Ax'|| < c|lx—x'||, Vxx €M

— L

The Euclidean distance between data (||b — b’||) is comparable to the
distance between images (||x — x'||) within the solution manifold M .

x:Ax=D>b : ' '
{ } I|b—b'|| {x c Ax' = b}

¢————@8M8M8M™»

g -

M

sove Ax =~ b
subjectto X € M




If the sampling strategy (involving A) does not
satisfy M-RIP, there is no way to solve Ax = b .

Example 2 (Undersampled MRI with uniform subsampling of factor 4);

We cannot solve Ax = b

because A X, x' EM st ||x —X||> 0= ||Ax — Ax'||.

This uniform subsampling does NOT satisfy M-RIP: %llx—x’ll < ||Ax—Ax'||<c|lx=X'|, Vx,x' €M

x;t =ATbéM Ax=Ax = Ax

uniform
subsampling-of
factoEE



As shown in the figure below, it is not
possible to know where the small tumor is
with uniformly undersampled data.

The null space {x: Ax=b}
Is determined by the

sampling strategy.

uniform
subsampling

of factor 4

N

This sampling strategy does not
satisfy the M-RIP because there

exist x&x" € M st.
0<|lx—Xx"|| & ||Ax — AX'|| =0



How to solve the ill-posed problem Ax=b7?

What is the solution space M?

What kind of prior information about the solution X constitutes M ?

Linear regression
(PCA, truncated Fourier,
Wavelet, Framelet, etc)

% o e ®
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Piece-wise linear regression

Sparse Sensing (Total Variation,
dictionary learning, sparse representation
using wavelet, Framelet, etc)

Non-Linear regression
(deep learning)




How can we impose prior

information of target images?

Regularized Data Fitting

VS

A

Deep Learning




sove AX = b subjectto X € M

Regularized data fitting (Single Fidelity)
X = argmin 2 ||Ax — b||* + A R(x)
x n

R(x) is regularization term such as

* R(x) = || Vx||,,

* R(x) = || hl|,,,

Two different approaches to impose

prior information of target images

x=Dh

|
= kind f1b>xEM st Af(b) = b

Deep learning (Group Fidelity)

f€ENeural Nets

f= argmin > ||x™ - f(b™)|2
n

{(x™,b™):n =1,---,N} ; training data

When f is learned, we get the solution directly from
the input data.
f(b) =x



Regularized Data Fitting A — B

Compressive sensing (CS) methods have shown remarkable
performance in image denoising.

But CS methods have limitations in medical imaging where small
anomalous details are more important than overall features.

/ Image Prior \Regularization
f(b) = Wh,h =

hope S data fldellty
P - \
N \ \
\ Basis/axis '

O \. O AT - Ais a regularization
i W1'1 : : Wl;k i hl parameter that controls
l ! : : . the trade-off between
E ! ! | data fidelity and the
I I ! i regularity enforcing the
: 2562, : ! 2562,’(: h sparsity of h.

w i w 1 .3
N J \ J

The term ||h]||,1 is used to promote the sparse representation..



For example, Total Variation regularization method may not
selectively preserve small features because it penalizes uniformly
based on image gradient, regardless of image structure.

X = argmin ||x — xTH§2 + Al|Vx|] 1
> X X

\ \
\ \

\ ‘. x4 =ATb
TV
regularization

TV removes everything within the

shrinkage interval without exception.

True solution




« DL approach can selectively preserve fine features.

Deep learning (Group Fidelity)

f= argmin > |Ix" - fB™)|P

fE€Neural Nets- = _--"7

f’
-
”
-

{(x(") b<")) n=1,-,N} ; training data

1 N Pixel-dimensional
{x( )’ ---,x( )} C M C Eyclidean space

Training data

Learning



What is M ?

Medical image (e.g., 256 grayscale level, 300 x 300 size) can be regarded as a point
X = (xq,*,X3002) In pixel-dimensional Euclidean space, where x; (j-th axis
coordinate) corresponds to the grayscale intensity at the j-th pixel.

1 N 3007
Training data are grayscale level images {x( ); "t x( )} — M C {|O’ "t 2 56'}

: ]

Training data 256 grayscale level Number of pixels

xr

‘e
27



What is M ? Even if tens of thousands of tomographic

images are collected every day for 1000 years, it occupies a
very small fraction of the pixel-dimensional Euclidean space.

(much less than 0.000000000000000000001% )

# of all possible images = 2563907300 ~ o
(256 grayscale level, 300 x 300 pixel size) (much greater than # of atoms in universe)

Challenging question: Can we find M from data samples?




Let us say that we have the following disentagled representation:

M ={G(h):h € K} with K c R

; If k < # rows, the problem becomes well-posed.

/ x b
G(h)=x

. "/
Generator  Latent Forward matrix
/decoder  variable
Input
: Data
The latent variables can be regarded
as strings connected to the marionette.

The generator can be seen as realizing
the movement of the marionette by
pulling the strings.

« Many problems are ill-posed because the solution space is too large .



Ax = b s nonlinear problem
if dim (span{d;G(h):h € K}) > #rows.

Tangent vectors on M

sove AX = b subjectto X € M M = {G(h) h - K}

A I

Chang Min Hyun, Seong Hyeon Baek, Mingyu Lee, Sung Min Lee, Jin Keun Seo, Deep Learning-Based Solvability
of Underdetermined Inverse Problems in Medical Imaging, Medical Image Analysis



f: b — x 1s nonlinear if dim (span{d;G(h): h € K}) > # rows.
f(b) is the solution of Ax =b

Proof:
« b= Ax & x=G(h) - vheK, f(AG(h)) = G(h)

+ Assume f:b — x is linear to induce a contradiction. Then Vf(-) is a
constant matrix &

VFAVG(h) = VG(h) forallhek "
-

Hence, a]G(h) (S Eigen1 (VfA) , the eigenspace of VfA corresponding to the eigenvalue 1.
Since dim [Eigen,(VfA)] < dim Range A < # rows,
this contradicts to the assumption ( dim(span{d;G(h): h € K}) > #rows).

Message: The degree of nonlinearity depends on # sampling of b &
the degree of bending of the solution manifold M;;;44e -



M is highly curved. Why?

Assume M = {X(e): 0 € [0,27‘[]} where x(®) denotes the 6 degree rotated image of x(o).

Span{y'' .-

Linear methods (PCA, truncated >

Fourier transform) may be unable to

deal with the highly curved N ©5) - 1.0 1 (1) . o 05)
solution manifold. Py x\°>) ~ E(x + x'*) destroys the main characteristics of x'%~/.




The highly underdermined problems are h ig h Iy non I i nea I‘!

As the missing data increases, the nonlinearity of inpainting increases.

The degree of nonlinearity depends on # sampling of data b

& the degree of bending of the solution manifold.

v" This is why it is difficult to solve highly underdetermined problem Ax = b by
conventional linear or piecewise-linear approaches.

v Deep learning techniques appear to handle nonlinear problems.




Deep Learning Approach

DL performance depends not only on the neural network architecture, but also on

the sampling strategy & the quality and quantity of training datasets.

Learn f from training data {(x(™,b™):n =1,---,N} by:

f= argmin ) [|x® — fb™)|]
1

fE€Neural Nets



DL performance depends on
the sampling strategy.

The necessary condition for learning f is that

f(Ax) = x ¥V x € Image Manifold.

M-RIP condition

Use training data {x™:n =1,--, N}
to get prior knowledge.



Undersmapled MRI
If we use Uniform subsampling with factor 4,

it is difficult to learn f s.t. f(Ax) =x VX € Image Manifold

v Why? It fails to satisfy M-RIP condition.
v'DL is NOT a magic. ATA

b =Ax = Ax'

Both x and x’ have = - ?

the same data b. -

]
Even deep learning is confused about which of the
two (x or x") to restore.



A small change to the sampling strategy can lead to a
dramatic improvement in learning.

v Adding a single phase encoding line can deal with position uncertainty
to unfold the folded image.

Sampled data: b

Deep
Learning
uniform
subsampling E—
of factor 4 ourier
: » e NOT learnable
—
Adding one line
Fourier Learnable
Transform —




DL performance depends on the
quality of training datasets.

Deep learning-based Denoising

f= argmin ) |lx™ - f(z)]2
n

f€Neural Nets

Z: Noisy input X: Denoised output



Park, H. S., Baek, J., You, S. K., Choi, J. K., & Seo, J. K. (2019). Unpaired image denoising using a

° . generative adversarial network in X-ray CT. IEEE Access, 7, 110414-110425.
Training Sample 1

1
. . Sm

Consider image denoising problem:

This training samples
{X("):n =1, ---,N}
consist of one disk
and one rectangle
with different sizes
and positions

f= argmin z [|x™ — £(z2™)])? The test image contains a anomaly inside
fE€Neural Nets < the disk, but training data do not contain

B any anomaly inside disk and rectangle.

This f can successfully remove noises on the test image but also remove small anomaly.



This training
samples {x(™W:n =
1,---,N} contains
small anomaly
inside rectangle.

Learn Image denoising

f= argmin z | — F(z)||? The test image contains anomaly inside the
f€Neural Nets - disk, but training data do not contain the

B anomaly inside disk.

This f can successfully remove noises on the test image while preserving the small feature.



Impact of Training Data {(z™,x™):n=1,--,N}

Training
Data 1

Training
Data 2

Training

Data 3

No small
anomaly

small
anomaly
inside
rectangle

)

small

anomaly
inside disk



An Important open question is how nonlinear

dimensionality reduction can be done .




A challenging problem is how to find a
low-dimensional representation from the training data.

5 Latent variables

- (hll
Generator Latent
/decoder variable

22

Can we find a
Disentangled expression
by extracting the
underlying explanatory
axis?




AutoEncoder (AE)

v' It aims to generate the data manifold M = { ¥(h) : h € K}
by learning "hierarchical disentangled representation’.
v AE can be viewed as a non-linear extension of PCA.

LOSSAE (lp; (I)) — Ex~pdata(x)”lp © (D(x) o x”Z

Encoder (I) Decoder l['

learn (@, W) with as
little reconstruction loss
as possible, rather than
trying to organize the

latent space well for

generative purposes.

I AEs do their best to

32x8x8
I

- /@xlﬁxlﬁ ! 16x16x16 '
X 64X I
1x64x64 /8><32><32 | 8x32x32 1x64x64 ‘
'

4><64_><64 p_'il ) '_, - 4><6;><64

AEs lacks the generalized capability
due to non-regularized latent space.



Variational AE (VAE)

v VAEs serve somewhat as a generative model.
v In VAE, the encoded latent variables are compressed and
normalized to a normal distribution, to enable the

Loss(®, W) =

Probabilistic Encoder
®(x) — q(z|x)

generative process.

(Encodm) >
Latent
variables

Ndata

z {DKL[Q(Z|X( N p(z)]

n=1

Probabilistic Decoder i — lP Z
Y(z) » p(x|z) (2)

Z=u+o@e
I e~N(0,D)
H (Decode1)

q (z|x(ﬂ))103 p(x( )|z)}

W

Regularization

W

Reconstruction loss

AE encodes the input as
a single point, whereas
VAE encodes the input

as a distribution over the

latent space.

45



Application of VAE
Electrical Impedance Tomography

v" We use VAE to disentangle lung EIT images, so that lung EIT images are
generated by x = W(h), h € R8.

v To solve Ax = b, instead of looking for images with 16384 pixels, we only
need to find 8 latent variables.

W . decoder in VAE
Map from EIT data to the latent variables

-I»I-I-I-l»ﬁ@

32 %32 x8

208 %1 256 x1

64 x64 x4

112 128x128x1

The ill-posed problem (76384 unknowns with 112 16384 pixels

equations) is turned into a well-posed problem
(8 unknowns with 112 equations).




J.K. Seo, K.C. Kim, A. Jargal, K. Lee and B. Harrach, A learning-based method
for solving ill-posed nonlinear inverse problems: a simulation : a simulation
study of Lung EIT," SIAM Journal on Imaging Sciences (2019)

Using VAE, we represent lung impedance images (16384 pixels)

by 8 latent variables.

(h) // EIT lung ventiltional shape deformations
I HEEEEE
h=(h1,h2’...’h8) #ﬁ@@ - - /
Latent variables TiigE 5 =) ‘ ) .

9944840434340 [40 /0D [€D[0D[0D 0D D 00 0 00 Tangnts

DOBOOOO000/0/000000

O] [40 00 [A0[ [ [ 0D|0D[aD[en|0D |00 0b]0b 0D

ND/B[BBO[O/OO0/0/0/000000 v(h) g m v(h)
(0 O T O 17 C ) O O O (T (X e w0

o o o v v ]
DN MMM MMmmMMMm ojojolojolofe



Unfortunately, for high-dimensional image,

VAE has limitations in that the image is

blurred and small details are lost.

Probabilistic Encoder Probabilistic Decoder
@(x) — q(z]x) ¥(z) - p(xlz)
z=pu+00e€
e~N(0,1)

O
L 4
(Decoder)

(Encoder)
Latent
ariables

.
Ndata

{UKLM(Z‘X(")) Ilp@@ |- Eqy(zixtmlos p(x(")|z)}
n=1

Regularization Reconstruction loss

Oy = 100

256 % 256 Head MR Image

512x512 Head CT Image

Test
Sample

MRI and CT images
(high dimensional data:
512 x 512 x 400 voxels)

PCA

AE

VAE




Challenging Issue: Low-dimensional
representation of MRI and CT images

v' Generative Adversarial Networks(GANs) have
shown remarkable performance in generation of
various realistic images.

v" However, GANs have difficulties to learn
disentangled representation. 7 » » G(z) »
v" VAEs learns a bidirectional mapping(encoder and

decoder), while GANs learn somewhat the
unidirectional mapping (decoding) in high
dimensional medical images X »

Discrminator

Lean (G, D) = Exp ;. [108§ D(X)] + E,_p (y[log (1 — D o G(2)]

The superiority of GANs in
entertainment-related fields can be a
disadvantage in the medical field, as it

WGAN

tends to reject the presence of small
anomalies that are rarely seen, due to
the strong punishment of the
discriminator.

PGGAN




The Last Example: |OW-C|OS€ COne Beam CT

Deep Learning-based 3D segmentation.

Input : z Output : X

3D CBCT image

Target error : 0.2 mm



o

TE—

=

|

|

! \@/

CBCT images are affected by “offset detector, FOV truncation, low
X-ray dose” and metal induced beam hardening,
resulting in significant image noise and artifacts.

source

Low Dose Dental CBCT

e Dental CBCT

- Circular conebeam

- Scan time: 8-24sec

- Resolution < 0.2mm
- FOV truncation

- Offset detector

- Price < $ 0.1 billion

- Low X-ray dose

e MDCT

- Helical conebeam

- Scan time < 1sec

- Resolution < 0.3mm
- No FOV truncation

- No Offset detector

. Price > $ 1 billion

- High X-ray dose




Even with modern deep learning techniques, it is
difficult to perform accurate tooth segmentation on
the metal-artifacts contaminated image.

In dental CBCT, metal
artifacts are common.

* Modeling error: The presence of highly attenuating materials such as
metallic objects complicates reconstruction techniques by violating
the forward model assumption of the sinogram data being equal to

the Radon transform of an image.

52



The key idea to overcome the difficulty is to get a good
prior knowledge that is obtained by generating a clean
panoramic image from the noisy CBCT image.

The panoramic image is not much affected by metal-related artifacts.

\ S

\ S
2D shape of

M ing fr CBCT
apping irom tooth can be

to panoramic image

seen.

CBCT image | '

Dental arch
generation

Panoramic image

This image was obtained by
integrating along the normal
direction of the dental arch.
This integration cancels out metal
artifacts.

Metal-artifact

contaminated image -



Get prior knowledge of 3D teeth from 2D tooth
segmentation obtained from panoramic images.

This 2D segmentation is used to find accurate 3D tooth ROIs and

identify individual teeth.

54



2D tooth segmentation provides a deep learning friendly
environment for 3D tooth segmentation.

Tae Jun Jang, Kang Cheol Kim, Hyun Cheol Cho,
and Jin Keun Seo, A fully automated method for
3D individual tooth identification and
segmentation in dental CBCT, I|EEE Transactions
on Pattern Analysis and Machine Intelligence
(2021)

Projected back
into CT image

ﬁ

panoramic image P(s, z)

Loose ROI

&

D

CT image X

(z,9,2) loose ROI R,

Extract ROIs by
3D bounding box

ﬁ

tight ROI R..,

Tight ROI 16 32

| v
| v >
> | v S
> > N > " P U L
32 G4 G4 128 128 61 64 64 3232 32 1616 16

Individual tooth segmentation
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Comment 1: The aforementioned toOth segmentation enables

the fusion of CBCT and intraoral scans, eliminating the
cumbersome procedure of conventional impressions.

) - (Q, Q)

Segmentation
& Identification_

Registration
FPFH

T
s & ICP

S

yegmentation
& Identification g

Skull segmentation

Y

Integration of IOS & CBCT

Stitching
error
correction




Al-based Digital Dentistry to improve workflow

DLs appear to overcome limitations of existing

mathematical methods in handling various

complex problems in segmentation.

m Hoxwi I

y—— / /7 ”’,-"'r’ e
L L g v //,

Big Data DEEP LEARNING

»

J
s
'{;”\"

Al Low Dose

:Zé‘\
Al Auto Detection




Comment 2: Paradigm shift in Segmentation

v Automated fetal biometric
measurements for fetal ultrasound
have been very difficult tasks for

SOLUTION BRIEF

over 30 years, but recently some of bl ‘
ic Ultrasound 4

these problems have been solved

with DLs!

}

|
Samsung Automates Ultrasound
Measurements to Improve Clinical Workflows

Kim, Bukweon; Kim, Kang Cheol; Park, Yejin; Kwon, Ja-Young; Jang,
Jaeseong; Seo, Jin Keun*, Machine-learning-based Automatic
Identification of Fetal Abdominal Circumference from Ultrasound
Images, Physiological Measurement (2018)

Hyun Cheol Cho, Siyu Sun, Chang Min Hyun, Ja-Young Kwon, Bukweon Kim, Yejin
Park, Jin Keun Seo, Automated ultrasound assessment of amniotic fluid index using
deep learning, Medical Image Analysis (2021)



Why did the DL methods achieve remarkable performance

in image segmentation tasks?

v DLs can learn prior anatomical knowledge to analyze
even heavily distorted images.

v DLs capture the spatial relationships between pixels ‘\
to figure out local and global interconnections. /.f-) =

- e
(c=1430m/s) Muscle
(c=1600m/s)
Placenta Fetal skull
(e =1500m/s) (e = 1700-3000 rn/s)

Ammniotic fluad

(c=1534m/s)
\.

Fetal bone ————

(c = 17003000 m )

Prior (X)




Thank you!

v' Medical imaging is in fact experiencing a paradigm shift due to a
marked and rapid advance in deep learning techniques.

v' However, there is a tremendous lack of a rigorous mathematical

foundation which would allow us to understand the reasons why
deep learning methods perform that well. SBIENIFUEIJ%IE%:':{D"IEL“EY
v" Despite the lack of rigorous analysis in deep learning, recent rapid
advances indicate that DL methodologies will see continued
improvements in performance as training data and experience

accumulate over time.
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