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Derivation of Heat Equation

Suppose u(r, t) measures the temperature at time t and positionr = (x,y,z) € Qina
three-dimensional domain Q ¢ R®.

According to Fourier’s law, the heat flow J = (Jx, Jy, J;) satisfies

J(r, t) = —k(r)Vu(r,t) (reQ, t>0)

where k is the thermal conductivity (that is a measure of its ability to conduct of the material) and YV u is the temperature

gradient.

For any domain D C , the law of conservation of energy leads to

/;Jc?—udr:/ V’-(kV’u)dr+/ f(r)ar.
J D ot D - -\D

C ;
A B C

where p is the density and c is the specific heat representing the amount of heat required to raise the temperature of one a0y = Ft&
unit mass by 1°. v A=the change of the total amount of heat per unit time in D. v B=the amount of heat per unit time (initial temp. distribution)
flowing into D. v C=the total amount of heat produced in D per unit time u(0.t) =0 Wu{tr} =0
Since D is arbitrary, u satisfies .

QU t) — — v (k(O)Vulr, 1) = ——£(r, 1). ? '

ot p(r)c(r) p(r)c(r)
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Theorem (One-dimensional Heat Equation)
For ¢ € Co(R), we define

oo x—x"|2
u(x, t):/ | \/ﬁe_l i o(x)dx"  (Vx€eR, t>0)

'

K(x—x',t)

-~

Then, u satisfies the heat equation with the initial condition ¢:

O kOl yxh=0 (VxER t>0)
ot X2 o ’

u(x,0) = ¢(x) (V x € R).

Proof.

@ A direct computation gives

E‘kﬁ] K(x,t)=0 (Vx e R, t>0).

[% — kda—;] u(x,t) = /m ([g — kaa—;] K(x —x, t)) #(x)dx" = 0.



Theorem (One-dimensional Heat Equation)
For ¢ € Co(IR), we define

00 x—x' |2
u(x,t) = / - \ﬂ%e‘ S g(x)dx'  (VXxeER, t>0)

Ki{x—=x'.1)

Then, u satisfies the heat equation with the initial condition ¢:

[gr k)xz]”(x )=0 (VX€ER, t>0)
u(x.0)=¢(x) (VxeR).

Proof.
@ A direct computation gives

[——kw] (.)=0 (VxCR, t>0).

Hence, for t > 0, we have

[8 s u(x.t):[i([% k(;?:.‘,}K(X—X U) ¢(x")ax’ = 0.

at T ox?

k
It remains to prove the initial condition

_ |x=x'|?

- p(x')dx =

vy

lim

t—0* / vV 47Tk

u(x, t)

This comes from the fact that

lim Le*% = §{x)
t=0% V4mkt

_—

K(x,1)

-

o(x) (VX €R).

(Vx € R).




Theorem (One-dimensional Heat Equation)
For ¢ € Co(R), we define

= Ix x:_a
U(X~f)=/_\/ﬁe‘“a~'r" é(x')dx'  (VXER, t>0)

K(x—x",1)

Then, u satisfies the heat equation with the initial condition ¢:

o) ?
{Lﬂkw{z]u(x.r)o (vxeR, t>0)

u(x,0) = ¢(x) (Vx eR).

Proof of  lim ] e M = §(x) (Vx € R).

t=0* v/ 4kt

Proof

@ Application of the change of variable y = x /v 4kt yields

/ K(x, t)d \F/ e Py = 1

@ Clearly, lim;_,o+ K(x,t) =0 (Vx # 0).

(T2 0)




Theorem (Maximum principle (1D Heat))

If a non-constant function u(x, t) satisfies

0 0°
{E_kW]u(X’t)_o (WVO<x<L 0<t<T),
then u(x, t) cannot attain its maximum anywhere in the rectangle (0, L) x (0, T]. In
other words, u attains its maximum on the bottom [0, L] x {t = 0} or the lateral side
{0, L} x [0, T].

@ Fore >0, v.(x, 1) := u(x,t) + ex* satisfies

) o?

{5 = kW} Ve = —2ke <0 (V¥ (x,t) € [0,L] x [0, T]).

@ v. cannot attain its maximum anywhere inside the rectangle (0, L) x (0, T].
Why? If v, attains its maximum at (xo, i) € (0, L) x (0, T], then

2

0 d .
kﬁ Ve(Xo, B) = EVE(XO’ fo) +2ke > 0+ 2ke> 0 (Not possible)

@ The proof follows from lim._o v. = u.

Space-time domain x=1




Theorem (Maximum principle (1D Heat))
If a non-constant function u(x, t) satisfies

d i

[é—r—kW u(x,t)=0 (VO < x <80 <1< T
then u(x. t) cannot attain its maximum anywhere in the rectangle (0, L) = (0. T]. In
other words, u attains its maximum on the bottom [0, L] x {t = 0} or the lateral side

{0, L} x [0, T].

Q@ Fore >0, v.(x.t) := u(x,t) + ex® satisfies
9 s
[a - k@] v. = —2ke <0 (¥ (x,t)e[0,L]x[0,T]).
Q@ v. cannot attain its maximum anywhere inside the rectangle (0. L) x (0, T].
Why? If v, attains its maximum at (xo, b) € (0. L) x (0, T], then

o

d ;
— V. ¥ = —V, N =
k(_)X2 Ve (Xo, o) 5 Ve(Xo, to) + 2ke > 0+ 2ke> 0 (Not possible)

@ The proof follows from lim,_p v. = u.

L

Space-time domain




Theorem (Uniqueness; 1D Heat)
There is at most one solution of

[% - k%] u(x, t) =f(x,1) ((Y (x,t) € (0,L) x (0, 7))
u(x,0) = ¢(x) (V x € [0,L1])
u(0,t) = go(t), u(L,t) = gi(t) (O<t<T)

where f, ¢, g and h are smooth functions. If uy and u, are two solutions of the above
problem, then uy = u..

@ The difference w = u; — u. satisfies

[% — k%] w(x,t) =0 (V (x,t) € [0,L] x [0, T])
w(x,0) =0 (V x € [0, L])
w(0,t) =0, w(L,t)=0 O0<t<T).

@ By the maximum principle, w = 0.



Theorem (Two-dimensional Heat Equation )

Let p € Co(R?). If u(r, t) is a solution of the two-dimensional heat equation

[%_vz} u(r,t) =0 (reR? t>0)

U(I’, 0) — (ﬁ(r)’

then u can be expressed by

u(r, t) = / K(r—r' t) ¢(r') ar

_Ir2

where K(r,t) = ;- e 4 is the heat kernel in the two dimension.

N

@ The proof is exactly same as that of the one-dimensional case.

@ Indeed, the proof comes from the following facts:

[%_vzl K(r,t) =0 (VreRz, t > 0)
and
lim K(r,t) =46(r)  (vr e R?).

t—0t

Image credit: Wikipedia



Gaussian filter & Denoising

Recall the solution of the heat equation:

Gaussian filter Median filter

rE v

u(r, t) = /RZ 4%,”‘9 Ll o) a . 4 ‘,
o Witht =12,
u(r, 0_2) = 1B &} = /2 Go(r—r')e(r') dr Denoising
where G, is the Gaussian filter defined by]R I S
Go(r) = 1 g,

2102

@ When ¢ is an observed image containing noise, we can view G, * ¢ as a
denoised image.

Additive Gaussian Noise

@ Forasmall o, G, * ¢ = ¢ and, therefore, details in the image are kept.The larger
o results in a blurred image G, * ¢ with reduced noise.

@ Hence, o determines the local scale of the Gaussian filter which reduces noise
while eliminating details of the image ¢.



Summery: Heat Equation

We assume a three-dimensional domain 2 occupying a solid object where heat
conduction occurs. If there is no heat source inside €2, then the temperature u(r, t)
satisfies

c(r)p(r)owu(r,t) = div (kVu)
- ~ 7 W
the rate of change of heat energy the heat flux into voxel region through its boundary

@ To predict future temperature, we need to know the initial temperature
distribution
U(r,O) = UO(r);

@ and some boundary conditions which usually will be one of the followings:

Dirichlet boundary condition: u(-,t)|aa = f (prescribed temperature),
Neumann boundary condition: kn-Vu(-, t)|sa =g (prescribed flux),
Robin boundary condition: kn-YVu(-, t)]oa = —H(u(-, t) — f(-, 1)]aq.

Here, H is called the heat transfer coefficient.



Wave Equation O~ | uxn =0

The wave equation describes how waves propagate.
This 1D wave propagates at the speed of c .




1D Wave Equation: flexible, elastic homogeneous string

@ Assume that the string (that is stretched between two points x = 0 and x = L)
undergoes relatively small transverse vibrations and its displacement u(x, t) at
time t and position x is perpendicular to the direction of wave propagation.

@ Assuming that the tension T and the density p are constants over the string, the
vertical component of the force acting on the string at [x, x + Ax] is

WX A p Y T x+ Ax 1) — ue(x. ).
V1+ 2 VAR B M ’
T [} ug(s,t) ds

X

@ Since force = massx acceleration = j"‘*m

. pua(s,t) dsoverthe interval
[x, x + Ax], we obtain

X+AXx X+Ax
/ pui(s,t) ds = T/ Uxx(S, t) ds.

@ Letting Ax — 0, we have puy — Tuxx = 0.

O If the string is released from the initial configuration described by the curve
y = f(x),0 < x < Landitis at rest when released from this configuration,

u(x,0) =1f(x) & w(x,0)=0, xe(0,L)

Image credit: Wikipedia



1D Wave Equation: flexible, elastic homogeneous string

@ Assume that the string (that is stretched between two points x = 0 and x = L)
undergoes relatively small transverse vibrations and its displacement u(x, t) at
time t and position x is perpendicular to the direction of wave propagation.

@ Assuming that the tension T and the density p are constants over the string, the
vertical component of the force acting on the string at [x, x + Ax] is

Tux{x + Ax, t) T U(x, 1)

T e = T (ux(x + Ax,t) — u(x,1)).
VI Uy Vo Uy

T [XH8% ye(s.t) ds

. . X+
@ Since force = massx acceleration = [

[x. x + Ax], we obtain

puy(s, t) ds over the interval

X+ A X X+ AX
/ pun(s, t) ds = T/ Uw(s. 1) ds.
J x Jx

@ Letting Ax — 0, we have puy — Tux = 0.

O If the string is released from the initial configuration described by the curve
y = f(x),0 < x < Landitis at rest when released from this configuration,

u(x.0) = f(x) & wu(x.0)=0,  xe(0.L)




Simple Wave Equation

The wave equation describes wave propagation in the medium. We begin with
understanding the structure of the general solution of the simple wave equation:

au ou
a(X:y)a i< b(XJY)@ = 0.

@ Whena=1,b=0, it becomes 2¥ = 0 which means that v does not depend on

ax

x. Hence, the general solution is
u= f(y) foran arbitarly function f.

For example, u = y* — 5y and u = €’ could be solutions of 2% = 0.



Simple Wave Equation

The wave equation describes wave propagation in the medium. We begin with
understanding the structure of the general solution of the simple wave equation:

du du
a(x.y)a + b{x,y)@ =0.

@ When a and b are constant, it becomes aux + buy, = 0 or (a,b) - Vu = 0, which
means that v does not change in the direction (a, b). That is, u is constant on
any line bx — ay = constant, called the characteristic line. We should note that
the characteristic line bx — ay = constant satisfies & = 2. Hence, the general
solution is

u= f(bx —ay) for an arbitarly function f.



Simple Wave Equation

The wave equation describes wave propagation in the medium. We begin with
understanding the structure of the general solution of the simple wave equation:

du du
a{x.y)a - b{x,y)@ =0.

@ Consider 2ux + yuy =0o0r (2,y) - Vu = 0. Then, u is constant on any
characteristic curve satisfying % = %. This means that u = constant for any

characteristic curve ye~*/? = C, which is a solution of & = £. Hence, the
general solution is

u=f (e‘x/ ° y) for an arbitarly function f.



Simple Wave Equation

The wave equation describes wave propagation in the medium. We begin with
understanding the structure of the general solution of the simple wave equation:
du du
a{x.y)a + b{x,y)@ =0.

@ Consider 2uy + 4xy“u, = 0. Then u is constant along the characteristic curves

satisfying
dy  4xy° >
= = 2Xy°.
dx 2 a4
Since the characteristic curves are y = (C — x*)~' or x* + | = C, the general
solution is

u="f (xz 1+ %) for an arbitarly function f.



Theorem
The general solution of the wave equation

2 2
[8__0 87] ux,t)=0 on —oo<x < oo

is
u(x,t) = f(x + ct) + g(x — ct)
where f and g are two arbitrary functions of a single variable.

O We can decompose the wave operator into

PPV _ (0 O\(D, 0
ot? ox2|  \ ot ox )\ot  “ox)’
O Writing v(x,t) = (& + ¢ )u(x, 1), v satisfies

(Q—Cﬁ)v—o in —oco< Xx <o
ot 0 - '




Theorem

The general solution of the wave equation
2 2 &
[ﬁ_cﬁ u(x,t)=0 on —oo< X<

is
u(x, t) = f(x + ct) + g(x — ct)
where f and g are two arbitrary functions of a single variable.

@ We can decompose the wave operator into

P 2P| _(0 CU) L LY
ot axz| — \ ot x J\at  “ox
O Writing v(x,t) = (& + ¢4 )u(x, t), v satisfies

14 il 4
. C- v=0 in —oco<Xx<o0.
ot ox

@ The general solution of v is v(x, t) = h(x + ct) for Yh € C'(R).
@ Then, u satisfies

(5} + Cag)u(x t) = v(x,t) = h(x + ct) VYhe C(R)



Theorem
The general solution of the wave equation
Y i
ar c26x2

] u(x,t)=0 on —oco<Xx<o0

is
u(x,t) = f(x +ct) + g(x — ct)
where f and g are two arbitrary functions of a single variable.

© We can decompose the wave operator into

P _ 2 _(H Gf*) D L0
o2 axz |~ \at dx J\ ot ax |’

@ Writing v(x,t) = (& + ci)u(x, t), v satisfies

3] i) .
(‘ c_r- )v=0 in —oo< X< oo
ot ax

N\

(3: N C_j)“(xa t) = v(x,t) = h(x +ct) Vhe C(R)

@ We can express the general solution as
u(x,t) = g(x — ct) + particular solution

where g(x — ct) is the general solution of u; + cux = 0.
® To determine the particular solution, we substituting f(x + ct) into it to get

(gt + ca£> f(x + ct) = 2¢f'(x + ct) = h(x + ct).

Hence, f satisfying 2¢f’ = his a particular solution.

@ The solution is
u(x,t) = f(x + ct) + g(x — ct)



Theorem

For a given initial displacement ¢ € C'(R) and initial velocity ) € C'(R), the solution
of the initial value problem
Ut = Cluye (=00 < X < o0, t>0)
u(x,0) = ¢(x) (—o0 < X < 00)
ui(x,0) = ¢¥(x) (—o0 < X < 0)

can be expressed as

x+ct
u(x, t) = % {(b(x + o) + (x — cr)} n 2lc / (s) ds.
x—ct

@ The general solution is u(x, t) = f(x + ct) + g(x — ct).
@ We need to determine f and g using the two initial conditions:

f(x)+g(x) = u(x,0) = a(x) &  cf'(x) = cg'(x) = u(x,0) = p(x).
@ Since f'=1(¢' +v/c) & g =1(¢' —v/c),

Fx) = % [q}‘}(X) ¥ :_: /O a_,-a(s)ds} +C & g(x)= % lq‘)(x) = 16 /O x«ap(s)ds} .



Ay

Vs

Continuity equation

@ Consider the flow of fluid with pressure p(X, t), density p(X, t) and the velocity of
the particle of fluid v(x, t).

@ The conservation of mass in a unit time interval is expressed by the relation

" /
X, t)ax = - V- nadS
pr p( ) P

A "y

the rate of increase of mass in Q the rate at which mass is flowing into %2

@ From the divergence theorem,

f(ér (X, 1)+ V- (pV)) =0

which leads to the continuity equation of

;I,o(x H)+V.-(pv)=0.



How to prove [[, . np dS= [f[,VpdV

Key idea: n=(n-eye,+ (n-eye, + (n-e,e,

n = (n,n,n,) ex=(1,00), €,=(0,10), e,=(001)

[[am - ex(exp) dS = eyff,on- (exp) dS

= ey Hfﬂv-(exp)dV=exjﬂQex-VpdV

Similarly, we have [[, n-e,(e,p) dS=e, [[[ e, VpdV & [[,,n-e,(e;p)dS=e,[[[ e, VpdV



Euler’s equation

@ If we denote by x(t) the path followed by a fluid particle, then the velocity is
v(x(t), t) = x'(t) and acceleration a satisfies

Div(x(t),t) = (v- V)v(x, t) + orv(x, t).
N——

a

@ Newton’s law gives

— p(X, t)n(x)de+/ Jals| dx:/prv(x, t)ax.
a0 0 Jo

~ ~ S
W W

force of stress + gravitational force mass x acceleration

@ From the divergence theorem,
/ (pDev(x, t) + Vp(r, t) — pg)dV =0
O
which leads to Euler’'s equation of motion

gv(x, t) +(v-V)v(x, 1) = —%Vp(xs ) +9(x,1).

"y

Ve

Dyv(x.t)



Euler’s equation
@ If we denote by x(f) the path followed by a fluid particle, then the velocity is
v(x(t). t) = x'(t) and acceleration a satisfies

Dv(x(t), 1) = (v- V)V(X, ) + Ov(x, 1).
e —

O Newton'’s law gives

- [3 _ PO ON(x)3S + [D pg dx = fD pD(X, t)dX.

force of stress + gravitational force mass x acceleration

@ From the divergence theorem,
] (oD (X, 1) + Vp(r, t) — pg) dV = 0
n]
which leads to Euler's equation of motion

D y(x, ) + (v- V)V(x, 1) = — :—JVp(x. 1)+ g(x. 1).

Dyv(x.1)

Image credit: Wikipedia



