
Caratheodory Theorem

Definition. (2.2.1; Outer measure)

• Let (X ,M, µ) be a measure space.
• Recall

(i) X is a set.
(ii) M is a σ−algebra, that is, closed under a countable union

and complementations.
(iii) µ is a measure on M, non-negative & countably additive .

• A null set is a set N s.t. µ(N) = 0
• If σ−algebra M includes all null set, then µ is said to be

complete.

• An outer measure on a non-empty set X is a set function µ∗

defined on P(X ) which is non-negative, monotone and
countably subadditive.

Why introduce the outer measure? Want to describe a general
constructive procedure for obtaining complete measure.
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Example of outer measure in X = R2

• X = R2, E=the σ-algebra generated by the set of all open
rectangles in R2, and define

ρ(E ) = the area of E , E ∈ E

• (X , E , ρ) is a measure space but it may not be complete.

• This ρ is called pre-measure.

• For A ⊂ X , we define

µ∗(A) = inf{ρ(E ) : A ⊂ E , E ∈ E}.

Then µ∗ is an outer measure.
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Proposition. (2.2.2: Construction of outer measure µ∗ on
P(X ))

Let E ⊂ P(X ) be an algebra of sets and ρ : E → R+ ∪ {0} an set
valued function such that ρ(∅) = 0. For A ⊂ X, we define

µ∗(A) = inf





∞∑

j=1

ρ(Ej) : A ⊂ ∪∞j=1Ej , Ej ∈ E


 .

Then µ∗ is an outer measure.

Proof.

1. Non-negative. By its definition, µ∗(∅) = 0 and µ(A) ≥ 0 for
A ⊂ X .

2. Monotone. If A ⊂ B and B ⊂ ∪∞j=1Ej , then A ⊂ ∪∞j=1Ej and
µ∗(A) ≤ µ∗(B).

3. See the next page.
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Proposition. (Continue... )

µ∗(A) = inf
{∑∞

j=1 ρ(Ej) : A ⊂ ∪∞j=1Ej , Ej ∈ E
}

: outer measure.

Continue...

3. It remains to prove countable subadditivity.
Let A = ∪∞j=1Aj . Let ε > 0 be given.
• For each j = 1, 2, · · ·, ∃Ejk ∈ E s .t.

Aj ⊂ ∪∞k=1Ejk &
∞∑

k=1

µ∗(Ejk) ≤ µ∗(Aj) + ε2−j

and therefore

µ∗(A) ≤
∞∑

j=1

∞∑

k=1

µ∗(Ejk) ≤
∞∑

j=1

(
µ∗(Aj) + ε2−j

) ≤
∞∑

j=1

µ∗(Aj)+ε

Since ε is arbitrary small, µ∗(A) ≤ ∑∞
j=1µ

∗(Aj).
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Definition. (2.2.3: µ∗-measurable by Caratheodory)

Let µ∗ be an outer measure on a set X . A subset A ⊂ X is said to
be µ∗-measurable if

∀E ⊂ X , µ∗(E ) = µ∗(E ∩ A) + µ∗(E \ A)

• This is SUPER CLEVER defintion!

• This definition provides a method of constructing a complete
measure space (X ,M, µ∗) where M is the collection of all
measurable sets.

• Example. The Lebesgue measure on X = R is an extension
of the pre-measure defined by ρ((a, b]) = b − a.

1. Let X = R. Let E be the smallest σ−algebra generated by
half-open intervals (a, b]. Then (R, E , ρ) is an measure space.

2. Define the outer measure µ∗ as in Prop 2.2.2.
3. Denote by M the collection of all measurable sets.
4. Then (R,M, µ∗) is a complete measure space.
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Theorem. (2.2.4: Caratheodory extension theorem)

Let µ∗ is an outer measure on X . Let M be the collection of all
measurable sets. Then M is σ−algebra and the restriction of µ∗

to M is a complete measure.

Proof.

• Prove that M is σ−algebra. Easy.

• Prove that (X ,M, µ∗) is a measure space. Easy.

• Prove that µ∗ is complete measure.
Proof. If µ∗(A) = 0, then for any E ⊂ X

µ∗(E ) ≤ µ∗(E ∩ A) + µ∗(E \ A) ≤ µ∗(A) + µ∗(E ) = µ∗(E )

Hence, µ∗(E ) = µ∗(E ∩ A) + µ∗(E \ A) for any E ⊂ X .
Hence, A ∈M.
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Lebesgue-Stieltjes measure

• Example: Lebesgue-Stieltjes measure on X = R.
• Let E be the algebra containing half open intervals (a, b].
• Define ρF ((a, b]) = F (b)− F (a) where F : R→ R is a

monotone increasing function.
• ρF is a pre-measure measure on E but ρF is not complete.
• Let µ∗ be the outer measure defined as before.
• Denote by M the collection of all measurable sets.
• Denote by µ = µ∗|M the restriction of µ∗ on M.
• This µ is called a Lebesgue-Stieltjes measure generated by F .

• Example: Lebesgue-Stieltjes measure on X = Rn or
metric space. The corresponding outer measure of Lebesgue
measure µ is

µ∗(A) = inf {ρ(U) : A ⊂ U, U open }

where ρ is a pre-measure defined on open sets in X . For
example in X = R2, ρ(U) = the volume of U.

7



Definition. (Metric Space (X , d) equipped with d =distance)

A metric space (M, d) is a set M and a function d : M ×M → R
such that

1. d(x , y) ≥ 0 for all x , y ∈ X.

2. d(x , y) = 0 iff x = y.

3. d(x , y) = d(y , x) for all x , y ∈ X.

4. d(x , y) ≤ d(x , z) + d(z , y) for all x , y ∈ X.

Example [Fingerprint Recognition] Let X be a data set of
fingerprints in Seoul city police department.

• Motivation: Design an efficient access system to find a target.

• We need to define a dissimilarity function stating the
distance between the data. The distance d(x , y) between two
data x and y must satisfy the above four rules.

• Similarity queries. For a given target x∗ ∈ X and ε > 0,
arrest all having finger print y ∈ X such that d(y , x∗) < ε.

8


