

Green Function for Laplacian

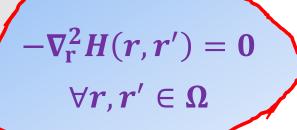
Definition

Let Ω be a smooth domain in \mathbb{R}^3 . The Green's function of the Laplace equation for the domain Ω is

$$G(\mathbf{r},\mathbf{r}') = \frac{1}{4\pi |\mathbf{r}-\mathbf{r}'|} - H(\mathbf{r},\mathbf{r}'), \qquad \mathbf{r},\mathbf{r}' \in \Omega$$

where $H(\mathbf{r}, \mathbf{r}')$ satisfies the following: for each $\mathbf{r}' \in \Omega$,

$$\begin{cases} -\nabla^2 H(\mathbf{r}, \mathbf{r}') = 0 & \text{for } \mathbf{r} \in \Omega \\ H(\mathbf{r}, \mathbf{r}') = \frac{1}{4\pi |\mathbf{r} - \mathbf{r}'|} & \text{for } \mathbf{r} \in \partial \Omega. \end{cases}$$



For a fixed $\mathbf{r}' \in \Omega$, the Green's function satisfies the following in the sense of distribution: $H(r,r') = \frac{1}{4\pi |r-r'|}$

$$\begin{cases} -\nabla^2 G(\mathbf{r}, \mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}') & \text{for } \mathbf{r} \in \Omega \\ G(\mathbf{r}, \mathbf{r}') = 0 & \text{for } \mathbf{r} \in \partial \Omega. \end{cases}$$

• When $\Omega = \mathbb{R}^3$, H = 0 and the Green's function $G(\mathbf{r}, \mathbf{r}') = \frac{1}{4\pi |\mathbf{r} - \mathbf{r}'|}$.

$$-\nabla^2 G(r-r') = -\nabla^2 \frac{1}{4\pi |\boldsymbol{r}-\boldsymbol{r}'|} + \nabla^2 H(r,r') = \delta(\boldsymbol{r}-\boldsymbol{r}')$$

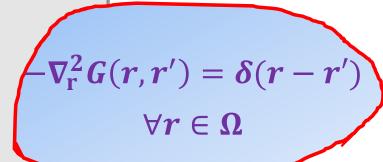
Theorem

We can express the solution of the Poisson's equation

$$\begin{cases} -\nabla^2 u = \rho & \text{in } \Omega \\ u|_{\partial\Omega} = 0 \end{cases}$$

as

$$u(\mathbf{r}) = \int_{\Omega} G(\mathbf{r}, \mathbf{r}') \rho(\mathbf{r}') d\mathbf{r}' \qquad (\forall \mathbf{x} \in \Omega).$$



The proof follows from the fact that

$$\begin{cases} -\nabla^2 G(\mathbf{r}, \mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}') & \text{for } \mathbf{r} \in \Omega \\ G(\mathbf{r}, \mathbf{r}') = 0 & \text{for } \mathbf{r} \in \partial \Omega. \end{cases}$$

 However, finding Green's function can be very very difficult if the domain is not a ball, half space, and domains with very special geometry. Solving the PDE using FEM is much much easier.

$$-\nabla_{\mathbf{r}}^2 u = -\int_{\Omega} \nabla_{\mathbf{r}}^2 G(\mathbf{r}, \mathbf{r}') \, \rho(\mathbf{r}') \, d\mathbf{r}' = \int_{\Omega} \delta(\mathbf{r} - \mathbf{r}') \, \rho(\mathbf{r}') d\mathbf{r}' = \rho(\mathbf{r})$$

Theorem (Green's function in half-space in 3D)

Let $\Omega := \{ \mathbf{r} = (x, y, z) : z > 0 \}$ be the upper half-space. Then, the Green's function of the half-space is given by

$$G(\mathbf{r};\mathbf{r}') = \frac{1}{4\pi|\mathbf{r}-\mathbf{r}'|} - \underbrace{\frac{1}{4\pi|\mathbf{r}-\mathbf{r}'_*|}}_{H(\mathbf{r},\mathbf{r}')}, \qquad \mathbf{r}'_* = (\mathbf{x}',\mathbf{y}',-\mathbf{z}').$$

• To find a Green's function, we need to find the function $H(\mathbf{r}, \mathbf{r}')$ such that, for each $\mathbf{r}' \in \Omega$,

$$\begin{cases} -\nabla^2 H(\mathbf{r}, \mathbf{r}') = 0 & \text{for } \mathbf{r} \in \Omega \\ H(\mathbf{r}, \mathbf{r}') = \frac{1}{4\pi |\mathbf{r} - \mathbf{r}'|} & \text{for } \mathbf{r} \in \partial \Omega. \end{cases}$$

- The idea is to match the boundary value of the Green's function using the mirror image of a source in Ω . When the mirror is located at $\partial\Omega$, the point $\mathbf{r}'_* = (x', y, -z)$ is the mirror image point of \mathbf{r} with respect to the surface $\partial\Omega$.
- With the aid of the mirror image point $\mathbf{r}'_* = (x', y', -z')$ of \mathbf{r}' , the function

$$\underbrace{\frac{1}{4\pi |\mathbf{r} - \mathbf{r}'|}}_{\text{fundamental sol'n}} = \underbrace{\frac{1}{4\pi |\mathbf{r} - \mathbf{r}'_*|}}_{H(\mathbf{r}, \mathbf{r}'_*)} \qquad (\forall \mathbf{r}' \in \Omega, \ \mathbf{r} \in \partial \Omega)$$

$$\mathbf{r}'_* = (x', y', -z')$$

$$\mathbf{G}(\mathbf{r}, \mathbf{r}') = \mathbf{0} \ \forall \ \mathbf{r} \in \partial \Omega$$

Since
$$\mathbf{r}_*' \notin \Omega$$
, we have $-\nabla^2 \frac{1}{4\pi |\mathbf{r} - \mathbf{r}_*'|} = 0$, $\forall \mathbf{r} \in \Omega$

$$\mathbf{r}'_* = (\mathbf{x}', \mathbf{y}', -\mathbf{z}')$$

$$\frac{1}{4\pi |\mathbf{r} - \mathbf{r}'|} = \frac{1}{4\pi |\mathbf{r} - \mathbf{r}'_*|} if z = 0$$

$$G(\mathbf{r},\mathbf{r}')=\mathbf{0} \ \forall \ \mathbf{r}\in\partial\Omega$$

$$\mathbf{r}'=(x',y',\mathbf{z}')$$

Theorem (Green's function in a ball)

The Green's function of the ball $\Omega = \{ \mathbf{r} = (x,y,z) : |\mathbf{r}| < s \}$ is given by

$$G(\mathbf{r};\mathbf{r}') = \frac{1}{4\pi|\mathbf{r}-\mathbf{r}'|} - \underbrace{\frac{s}{4\pi|\mathbf{r}'|\ \left|\mathbf{r}-\frac{s^2\mathbf{r}'}{|\mathbf{r}'|^2}\right|}}_{H(\mathbf{r},\mathbf{r}')}.$$

• The image point \mathbf{r}'_* with respect to the sphere $\partial\Omega$ is given by

$$\mathbf{r}'_* = rac{s^2\mathbf{r}'}{|\mathbf{r}'|^2}.$$

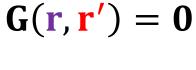
As a result,

$$H(\mathbf{r},\mathbf{r}') = rac{s}{4\pi |\mathbf{r}'| \ \left|\mathbf{r} - rac{s^2\mathbf{r}'}{|\mathbf{r}'|^2}
ight|}$$

is harmonic w.r.t. r and

$$rac{s}{4\pi |\mathbf{r}'| \ \left|\mathbf{r} - rac{s^2\mathbf{r}'}{|\mathbf{r}'|^2}
ight|} = rac{1}{4\pi |\mathbf{r} - \mathbf{r}'|} \quad ext{for all } |\mathbf{r}| = s.$$

$$\mathbf{r}'_* = \frac{s^2\mathbf{r}'}{|\mathbf{r}'|^2}.$$



$$\forall r \in \partial \Omega$$

Since
$$\mathbf{r}_*' \notin \Omega$$
, we have $-\nabla_{\mathbf{r}}^2 \frac{1}{4\pi |\mathbf{r} - \mathbf{r}_*'|} = 0$, $\forall \mathbf{r} \in \Omega$

Lemma

If G is a Green's function for the domain Ω , then it is symmetric:

$$G(\mathbf{x}, \mathbf{y}) = G(\mathbf{y}, \mathbf{x}) \qquad (\forall \mathbf{x}, \mathbf{y} \in \Omega)$$

where $\mathbf{x} = (x_1, x_2, x_3)$ and $\mathbf{y} = (y_1, y_2, y_3)$.

Proof. Integrating by parts gives

$$G(\mathbf{x}, \mathbf{y}) = \int_{\Omega} \delta(\mathbf{z} - \mathbf{x}) G(\mathbf{z}, \mathbf{y}) d\mathbf{z} = -\int_{\Omega} \nabla_{\mathbf{z}}^{2} G(\mathbf{z}, \mathbf{x}) G(\mathbf{z}, \mathbf{y}) d\mathbf{z}$$

$$= \int_{\Omega} \nabla_{\mathbf{z}} G(\mathbf{z}, \mathbf{x}) \cdot \nabla_{\mathbf{z}} G(\mathbf{z}, \mathbf{y}) d\mathbf{z}$$

$$= -\int_{\Omega} G(\mathbf{z}, \mathbf{x}) \cdot \nabla_{\mathbf{z}}^{2} G(\mathbf{z}, \mathbf{y}) d\mathbf{z} = \int_{\Omega} G(\mathbf{z}, \mathbf{x}) \delta(\mathbf{z} - \mathbf{y}) d\mathbf{z}$$

$$= G(\mathbf{y}, \mathbf{x}).$$

Theorem (Poisson's equation with Dirichlet BC)

For $f \in C^1(\partial\Omega)$, the solution of the Poisson's equation

$$\begin{cases} -\nabla^2 u = \rho & \text{in } \Omega \\ u|_{\partial\Omega} = f. \end{cases}$$

is expressed as

$$u(\mathbf{r}) = \int_{\Omega} G(\mathbf{r}; \mathbf{r}') \rho(\mathbf{r}') d\mathbf{r}' + \int_{\partial \Omega} K(\mathbf{r}; \mathbf{r}') f(\mathbf{r}') dS_{\mathbf{r}'}, \quad \mathbf{r} \in \Omega$$

where the Poisson kernel $K(\mathbf{r}, \mathbf{r}')$ is

$$K(\mathbf{r},\mathbf{r}') = -\mathbf{n}(\mathbf{r}') \cdot \nabla_{\mathbf{r}'} G(\mathbf{r},\mathbf{r}'), \qquad (\forall \mathbf{r}' \in \partial \Omega \& \forall \mathbf{r} \in \Omega).$$

• For a fixed $\mathbf{r} \in \Omega$, integration by parts gives

$$\begin{split} u(\mathbf{r}) &= \int_{\Omega} \delta(\mathbf{r} - \mathbf{r}') \ u(\mathbf{r}') d\mathbf{r}' = - \int_{\Omega} \nabla_{\mathbf{r}'}^2 G(\mathbf{r}, \mathbf{r}') \ u(\mathbf{r}') d\mathbf{r}' \qquad \text{(distributional sense)} \\ &= \int_{\partial \Omega} K(\mathbf{r}, \mathbf{r}') f(\mathbf{r}') \ dS_{\mathbf{r}'} + \int_{\Omega} \nabla_{\mathbf{r}'} G(\mathbf{r}, \mathbf{r}') \cdot \nabla u(\mathbf{r}') d\mathbf{r}' \\ &= \int_{\partial \Omega} K(\mathbf{r}, \mathbf{r}') f(\mathbf{r}') \ dS_{\mathbf{r}'} + \int_{\Omega} G(\mathbf{r}, \mathbf{r}') \rho(\mathbf{r}') d\mathbf{r}'. \end{split}$$

Theorem (Mean value property and maximum principle)

Assume that $u \in C^2(\bar{\Omega})$ satisfies $\nabla^2 u(\mathbf{r}) = 0$ in Ω . For each $\mathbf{r}^* \in \Omega$, $u(\mathbf{r}^*)$ is the average of u over its neighboring sphere centered at \mathbf{r}^* :

$$u(\mathbf{r}^*) = \frac{1}{4\pi s^2} \int_{\partial B_s(\mathbf{r}^*)} u(\mathbf{r}) dS_{\mathbf{r}} \qquad (\forall B_s(\mathbf{r}^*) \subset \Omega).$$

Moreover, u can not have a strict local maximum or minimum at any interior point of Ω . In other words,

$$\sup_{\partial\Omega} u = \sup_{\Omega} u \quad \text{and} \quad \min_{\partial\Omega} u = \min_{\Omega} u.$$

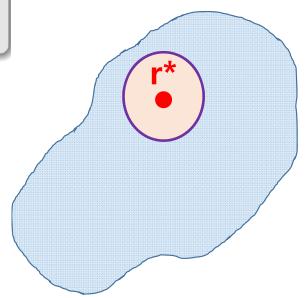
• Assume $B_s(\mathbf{r}^*) \subset \Omega$. If $K(\mathbf{r}, \mathbf{r}')$ is the Poisson Kernel for the ball $B_s(\mathbf{r}^*)$, a straightforward computation gives

$$K(\mathbf{r},\mathbf{r}^*)|_{\mathbf{r}\in B_s(\mathbf{r}^*)}= \text{constant}=\frac{1}{4\pi s^2}.$$

Then, the mean value property follows from the representation formula

$$u(\mathbf{r}) = \int_{\Omega} G(\mathbf{r}; \mathbf{r}') \rho(\mathbf{r}') d\mathbf{r}' + \int_{\partial \Omega} K(\mathbf{r}; \mathbf{r}') f(\mathbf{r}') dS_{\mathbf{r}'}$$

with $\rho=0$ and the above identity. Moreover, the mean value property gives the maximum principle.



Theorem

Denote $B_s = \{|\mathbf{r}| < s\}$. If $u \in C^2(\bar{B}_s)$ satisfies $-\nabla^2 u = \rho$ in B_s , then

$$u(0) = ave_{\partial B_s}u + \int_{B_s} \frac{1}{4\pi} \left(\frac{1}{|\mathbf{r}|} - \frac{1}{s}\right) \rho(\mathbf{r})d\mathbf{r}$$

where $ave_{\partial B_s}u=\frac{1}{4\pi s^2}\int_{\partial B_s}u(\mathbf{r})dS_{\mathbf{r}}.$ In particular,

$$abla^2 u = \rho \ge 0 \text{ in } B_s \Rightarrow u(0) \le ave_{\partial B_s} u,$$

$$abla^2 u = \rho \leq 0 \text{ in } B_s \Rightarrow u(0) \geq ave_{\partial B_s} u.$$

The identity follows from the representation formula

$$u(\mathbf{r}) = \int_{\Omega} G(\mathbf{r}; \mathbf{r}') \rho(\mathbf{r}') d\mathbf{r}' + \int_{\partial \Omega} K(\mathbf{r}; \mathbf{r}') f(\mathbf{r}') dS_{\mathbf{r}'}$$

Theorem

Let $\rho \in C(\bar{\Omega})$ and $f \in C^1(\partial \Omega)$. Suppose that $u \in C^2(\Omega) \cap C^1(\bar{\Omega})$ is the solution of

$$\begin{cases} -\nabla^2 u = \rho & \text{in } \Omega \\ u|_{\partial\Omega} = f. \end{cases}$$

Then, u is characterized as the unique solution that minimizes the Dirichlet functional

$$\Phi(\mathbf{v}) := \int_{\Omega} \frac{1}{2} |\nabla \mathbf{v}|^2 - \rho \mathbf{v} d\mathbf{x}$$

within the set $A := \{ v \in C^2(\Omega) \cap C^1(\overline{\Omega}) : v|_{\partial\Omega} = f \}.$

• Suppose $w = \arg\min_{v \in \mathcal{A}} \Phi(v)$. Since $\Phi(w) \leq \Phi(w + t\phi)$ for any $\phi \in C_0^1(\Omega)$ and any $t \in \mathbb{R}$,

$$0 = \left. \frac{d}{dt} \Phi(w + t\phi) \right|_{t=0} = \int_{\Omega} \nabla w \cdot \nabla \phi - \rho \phi d\mathbf{x} \qquad \forall \phi \in C_0^1(\Omega).$$

Integration by parts yields

$$\int_{\Omega} (\nabla^2 w + \rho) \phi d\mathbf{x} = 0 \qquad \forall \phi \in C_0^1(\Omega),$$

which leads to $\nabla^2 w + \rho = 0$ in Ω .

Energy Minimization Approach

If u is the solution of $-\nabla u = \rho$ in Ω with $u|_{\partial\Omega} = f$, then u minimizes the energy functional $\Phi(u)$ within the class $\mathcal{A} := \{w \in C^2(\bar{\Omega}) : u|_{\partial\Omega} = f\}$ where the energy functional is defined by

$$\Phi(u) := \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 - \rho u \right) d\mathbf{r}.$$

Proof.

• For all $\phi \in \mathcal{A}$,

$$0 = \int_{\Omega} (-\nabla^2 u - \rho)(u - \phi) dx = \int_{\Omega} \nabla u \cdot \nabla (u - \phi) - \rho (u - \phi).$$

• For all $\phi \in \mathcal{A}$,

$$\int_{\Omega} |\nabla u|^2 - \rho u d\mathbf{r} = \int_{\Omega} \nabla u \cdot \nabla \phi - \rho \phi d\mathbf{r}.$$

• Since $|\nabla u \cdot \nabla \phi| \leq \frac{1}{2} |\nabla u|^2 + \frac{1}{2} |\nabla \phi|^2$,

$$\Phi(u) \leq \Phi(\phi)$$
 for all $\phi \in \mathcal{A}$.