Green Function
for Laplacian




Definition
Let Q be a smooth domain in R3. The Green’s function of the Laplace equation for the

domain Q2 is 1

—— — H(r.r), rr e Q
47|r — 1’| () s

G(r,r') =

where H(r,r’) satisfies the following: for each r’ € €,

H(r,v)= ——- forre aQ.

4 |r—r’|

{—VZH(r, £)=0 forr e Q

@ For afixed r' € Q, the Green’s function satisfies the following in the sense of

—VZH(r,r') =0

distribution:

—V2G(r,r')=6(r—r) forreQ H(r,r")
G(r,r') =0 forr € 0Q.
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@ When Q = R®, H = 0 and the Green’s function G(r,r') = .

—V2G(r—71") = -V? +V?H(r,r') =6(r —1")

At|lr — r'|




Theorem |
We can express the solution of the Poisson’s equation

—Yeu=p in Q
Uloa =0

ViG(r,r") =6(r—1")
Vr € Q

as
uir) = / G(r,r)p(r)dr  (¥x € Q).

@ The proof follows from the fact that

—-V2G(r,r)=46(r—r) forreQ
Grir)=>0 for r € 010.

@ However, finding Green’s function can be very very difficult if the domain is not a

ball, half space, and domains with very special geometry. Solving the PDE using
FEM is much much easier.

—Viu = — J VZG(r,r) p(r) dr’ = jd(r — 1) p(r)dr' = p(r)
Q Q



Theorem (Green'’s function in half-space in 3D)

LetQ):={r=(x,y,z) : z> 0} be the upper half-space. Then, the Green'’s function
of the half-space is given by

N 1 1 9 y /
G(r’r)_ 4w|r—r’| 471_“_',;': M. = (X Y Z).
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H(r,r")

@ To find a Green'’s function, we need to find the function H(r,r") such that, for

r. = (x'

¢

G(r,r') =

7y,7 _Z,)

0O Vreon

eachr' € Q,
~V2H(r,r) =0 forre Q
H(rv) = zi=  forreoQ.

@ The idea is to match the boundary value of the Green’s function using the mirror
image of a source in 2. When the mirror is located at 052, the point
r, = (x’,y, —z) is the mirror image point of r with respect to the surface 912.

@ With the aid of the mirror image point r, = (x’, y’, —z') of r’, the function

: 1 (VF € Q, re o)

4r|r — | - 4r|r — rl|
| | S —
fundamental sol'n H(r,r,)

Since T,” & Q, we have —I7?
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=0, Vr e}



rl = (x,y,~2')
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— = ifz=20
At|lr — 71| 4m|r —rl] f = G(r,r') =0 Vr e aQ
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Theorem (Green’s function in a ball)
The Green’s function of the ball Q = {r = (x,y,z) : |r| < s} is given by

1 S
G(r;r') = — :
[r/]

Ny

"

H(r,r")

@ The image point r, with respect to the sphere 922 is given by

2.

yo_ ST
tPE
As a result,
HrE) = ——=—
4rm|r'| |r— 72
IS harmonic w.r.t. r and
. = L —  forall|r| =s.
4r|r'| |r— =6, 4rr—r'|
, 1
Since I,’ & (), we have —\71.2 =0, Vr €}
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Lemma
If G is a Green’s function for the domain 2, then it is symmetric:

G(x,y) = G(y,x) (Vx,y € Q)

where X = (X1, X2, x3) and'y = (y1, Y2, ¥3).

@ Proof. Integrating by parts gives
G(X,y) = / 5(z — X)G(z,y)dz = — / V2G(z. X) G(z,y)dz
Q Q
:/VZG(Z, X) - V:G(z,y)dz
Q

__ / G(z,X) - V2G(z,y)dz = / G(z,%) §(z — y)dz
= G(y, X).



Theorem (Poisson’s equation with Dirichlet BC)

For f € C'(09), the solution of the Poisson’s equation

—Neu=p inQ
U|aQ — i

is expressed as
/ G(r;r')p(r')dr’ + / K(r;r') f(r') dSy, reQ
a2

where the Poisson kernel K(r,r’) is

K(r,r') = —n(r') - V. G(r, 1), (Vr' € 02 & Vr e Q).

@ For afixed r € 2, integration by parts gives
u(r) = / S(r—r") u(r / Va G(r, ') u(r)adr ( distributional sense)

= K(r,r')f(r') dSy + / Ve G(r,r') - Vu(r')dr’

= K(r,r')f(r') dS, + /G(r, r')p(r’)ar’.
Q
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Theorem (Mean value property and maximum principle)

Assume that u € C*(Q) satisfies VZu(r) = 0 in Q. For eachr* € Q, u(r*) is the
average of u over its neighboring sphere centered atr*:

a0 ' «
ur) =45 ass(r*)u(r)dsr (VBs(r*) C Q).

Moreover, u can not have a strict local maximum or minimum at any interior point of 2.
In other words,

sSuUpu = supu and min u = min u.
an Q oQ Q

@ Assume Bs(r*) C Q. If K(r,r") is the Poisson Kernel for the ball Bs(r*), a
straightforward computation gives

K(r,r")|reByr+) = constant =

4rs?’
Then, the mean value property follows from the representation formula

u(r) = /g;G(h r')p(r)dr’ + [m K(r;r') f(r') dSy

with p = 0 and the above identity. Moreover, the mean value property gives the
maximum principle.




Theorem
Denote Bs = {|r| < s}. If u € C?(Bs) satisfies —V?u = p in Bs, then

1 /1 1
u(0) = avegp. U + /BS = (— — —) p(r)dr

r[ s
where aveys,U = 15 [, u(r)dS:. In particular,

Viu=p>0 inBs= u(0)< avess,u,

VZu=p<0 inBs= u(0)> avess,u.

@ The identity follows from the representation formula

u(r) = /Q Gr:)p()dr + [ K(r:¥) £(r') dS,

oN



Theorem
Letp € C(Q) and f € C'(09). Suppose that u € C*(Q) N C'(Q) is the solution of

—Yeu=p inQ
U|aQ =

Then, u is characterized as the unique solution that minimizes the Dirichlet functional
1 2
o(v):= [ 5|VV|" — pvdx
Q2

within the set A .= {v € C*(Q) N C'(Q) : V|oq = f}.

@ Suppose w = argmin,c4 ®(v). Since d(w) < d(w + to) for any ¢ € C}(Q) and
any t € R,

0= %¢(W+t<b) :/ Vw- V¢ — popdx Vo € C&(Q).

Q

t=0
Integration by parts yields

/(vzw L )edx =0 Ve CHQ),
Q

which leads to V2w + p = 0in Q.




Energy Minimization Approach

If uis the solution of —Vu = pin Q with u|se = f, then u minimizes the energy
functional ®(u) within the class A := {w € C*(Q) : u|aa = f} where the energy

functional is defined by
d(u) = / (;Wug - pu) dr.
JQ

Proof.
@ Forall ¢ € A,

0= [ (~VPu=p)u=a)ox = [ Tu-V(u=6)=plu=0)

@ Forallp € A,
/ |Vu|2 — pudr = / Vu-Va¢ — ppdr.
Q Q

@ Since |Vu-V¢| < 1|Vul® + 1|Vo|?,
d(u) < (o) forall ¢ € A.



