Chapter 3. Measurable functions

- A function $f: \mathbb{R}^n \to \mathbb{R}$ is Lebesgue measurable if $f^{-1}(U)$ is Lebesgue measurable for every open set U.
- Let X be a metric space and let (X, \mathcal{M}, μ) be a measure space. A function $f: X \to \mathbb{R}$ is measurable if $f^{-1}(U) \in \mathcal{M}$ whenever U is an open or closed interval, or open ray (a, ∞) . It is a simple exercise to show the followings:
 - $f^{-1}(E \cup F) = f^{-1}(E) \cup f^{-1}(F)$.
 - $f^{-1}(E \cap F) = f^{-1}(E) \cap f^{-1}(F)$. $f^{-1}(E^c) = [f^{-1}(E)]^c$.
- In particular, $f: X \to \mathbb{R}$ is measurable if $\{x \in X : f(x) > a\} \in \mathcal{M} \text{ for all } a \in \mathbb{R}.$
- Given two function f and g we define

$$f \lor g = \max\{f, g\}$$
 $f \land g = \min\{f, g\}$
 $f^+ = f \lor 0$ $f^- = (-f) \lor 0$

Proposition. (3.1.2)

If f and g are measurable, then so are f + g, fg, $f \lor g$, $f \land g$, f^+ , f^- , and |f|.

 $\mathbb{O} :=$ the set of rational numbers.

Proof. We will denote $\{f > a\} := \{x \in X : f(x) > a\}$

- f+g is measurable because $\forall a \in \mathbb{R}, \ \{f+g>a\} = \cup_{t \in \mathbb{Q}} (\{f>t\} \cap \{g>a-t\}).$
 - f^2 is measurable since $\{f^2 > a\} = X$ if a < 0 and $\forall a \ge 0$, $\{f^2 > a\} = \{f > \sqrt{a}\} \cup \{f < -\sqrt{a}\}$.
 - fg is measurable because $fg = \frac{(f+g)^2 f^2 g^2}{2}$.
 - f^+ is measurable because $\{f^+ > a\} = X$ if a < 0 & $\{f^+ > a\} = \{f > a\}$ if $a \ge 0$.
 - |f| is measurable because |f| = f⁺ + f⁻.
 f ∨ g, f ∧ g are measurable because
 - $f \lor g$, $f \land g$ are measurable because $f \lor g = \frac{f+g+|f-g|}{2}$, $f \land g = \frac{f+g-|f-g|}{2}$.

Theorem. (3.1.3)

If $\{f_j\}$ is a sequence of measurable functions, then $\limsup_j f_j$, $\limsup_j f_j$ are measurable.

Proof. Denote $\phi := \limsup_{i} f_{i}$.

- 1. Recall $\phi := \limsup_{j \neq i} f_j = \lim_{n \to \infty} g_n$ where $g_n = \sup_{j > n} f_j$.
- 2. $\{g_n > a\} = \bigcup_{i > n} \{f_i > a\}$. Hence, g_n is measurable.
- 3. Since $g_n \setminus \lim \sup_i f_i = \inf_{n \ge 0} g_n$.
- 4. Hence, $\{\phi > a\} = \bigcap_{n=1}^{\infty} \{g_n > a\}.$
- 5. Therefore ϕ is measurable.
- 6. A similar proof shows that $\liminf_{j} f_{j}$ is measurable.

2

3.2 Integration of non-negative functions

Let (X, \mathcal{M}, μ) be measure space where X is a metric space. If your mathematical background is poor, you regard X as $X = \mathbb{R}^2$ and μ as the standard Lebesgue measure, that is, $\mu(A) =$ the area of A. Throughout this lecture, E, E_j are a measurable set.

 The characteristic function of E denoted by χ_E is the function defined by

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{otherwise} \end{cases}$$

 A simple function is a finite linear combination of characteristic functions

$$\phi = \sum_{j=1}^{n} c_j \chi_{E_j}$$

Hence,
$$E_i = \{ \phi = c_i \}$$
.

Theorem. (3.2.1)

Let $f: X \to \mathbb{R}$ be measurable and f > 0. Then

$$\phi_n = \sum_{k=0}^{2^{2n}-1} k 2^{-n} \chi_{E_{n,k}} + 2^n \chi_{F_n} / f$$

where $E_{n,k} = f^{-1}((k2^{-n}, (k+1)2^{-n}])$, $F_n = f^{-1}((2^n, \infty])$. Moreover, each ϕ_n satisfies

$$\phi_n \le \phi_{n+1}$$
 & $0 \le f(x) - \phi_n(x) \le 2^{-n}$ for $x \in X \setminus F_n$

Proof. Straightforward.

From the above theorem, we can prove that for any measurable function f there is a sequence of simple functions ϕ_n such that $\phi_n \to f$ on any set on which f is bounded.

Why? $f = f^+ - f^-$ where $f = \max_{r} \{f, 0\}$ and $f^- = \max\{-f, 0\}$.

Let (X, \mathcal{M}, μ) be a measure space.

• **Definition of Lebesgue Integral for simple functions** The integral of a measurable simple function $\phi = \sum_{j=1}^{n} c_j \chi_{E_j}$ is defined to be

$$\int \phi d\mu = \sum_{i=1}^n c_i \ \mu(E_i)$$

- We use the convention that $0 \cdot \infty = 0$.
- If ϕ is a simple function, then $\phi \geq 0 \implies \int \phi d\mu \geq 0$.
- Let \mathcal{S}_{imple} be a vector space of measurable simple functions. Then the integral $\int \Box d\mu$ can be viewed as a linear functional on \mathcal{S}_{imple} , that is, $\int \Box d\mu : \mathcal{S}_{imple} \to \mathbb{R}$ is linear.

6

Lemma. (3.2.2)

Let (X, \mathcal{M}, μ) be a measure space. Given a non-negative, measurable simple function ϕ and $A \in \mathcal{M}$, define

$$\nu(A) = \int_{A} \phi \ d\mu = \int_{X} \phi \chi_{A} \ d\mu$$

Then (X, \mathcal{M}, ν) is also a measure space.

Proof. Let $\phi = \sum_{k=1}^{n} c_k \chi_{E_k}$ where $E_k \in \mathcal{M}$. Assume $A = \bigcup_j A_j$ where $A_i \in \mathcal{M}$ are mutually disjoint. Then

$$\nu(A) = \int \phi \chi_A \ d\mu = \sum_{k=1}^n \int c_k \chi_{E_k} \chi_A d\mu = \sum_{k=1}^n \int c_k \chi_{E_k \cap A} d\mu$$

$$= \sum_{k=1}^n c_k \mu(E_k \cap A) = \sum_{k=1}^n \sum_{j=1}^\infty c_k \mu(E_k \cap A_j)$$

$$= \sum_{j=1}^\infty \sum_{k=1}^n c_k \mu(E_k \cap A_j) = \sum_{j=1}^\infty \int_{A_j} \phi d\mu = \sum_j \nu(A_j)$$

Definition. (Lebesgue integral of non-negative measurable function)

The integral of a non-negative measurable function f is defined by

$$\int f \ d\mu = \sup \left\{ \int \phi d\mu \ : \ \phi \leq f \ \& \ \phi \in \mathcal{S}_{imple} \right\}$$

Recall that the integral of a measurable simple function $\phi = \sum_{j=1}^{n} c_j \chi_{E_j}$ is defined to be

$$\int \phi d\mu = \sum_{j=1}^{n} c_j \ \mu(E_j)$$

From the definition, we obtain

$$f \leq g \implies \int f d\mu \leq \int g d\mu$$

Theorem. (3.2.3: MCT(Monotone Convergence Thm))

If $\{f_n\}$ is a nondecreasing sequence of non-negative measurable functions, then

$$\int \lim_n f_n \ d\mu = \lim_n \int f_n \ d\mu$$

- Since $f_n \nearrow$, $\lim_n f_n = \exists f$ and is measurable. Note that it is possible that $f(x) = \infty$ at some x.
- Since $\int f_n d\mu \nearrow$ and $f_n \le f$, $\int f_n \le \int f$ and therefore

$$\lim_{n} \int f_{n} d\mu \leq \int f d\mu$$

• It remains to prove $\lim_n \int f_n d\mu \geq \int f d\mu$.

Theorem. (3.2.3: ContinueMCT)

If
$$f_n \nearrow$$
, then $\int \lim_n f_n d\mu = \lim_n \int f_n d\mu$

Continue... Aim to prove $\lim_{n} \int f_{n} d\mu \geq \int f d\mu$.

• Since $\int f \ d\mu = \sup\{\int \phi d\mu : \phi \leq f, \ \phi \in \mathcal{S}_{imple}\}$, it suffices to prove that for any α , $0 < \alpha < 1$ and any $\phi \in \mathcal{S}_{imple}$ with $\phi < f$,

$$\lim_{n} \int f_{n} d\mu \geq \alpha \int \phi d\mu$$

• Let $E_n = \{f_n \ge \alpha \phi\}$. Then

$$\int f_n d\mu \geq \int_E f_n d\mu \geq \int_E \alpha \phi \ d\mu : \stackrel{\text{define}}{=} \alpha \ \nu(E_n)$$

• Since ν is a measure and $E_n \nearrow X$, $\lim_n \nu(E_n) = \nu(X) = \int \phi d\mu$. Thus, $\lim_n \int f_n d\mu \ge \alpha \int \phi d\mu$.

Corollary. (3.2.4: $\phi_n \nearrow f$)

Let \mathcal{M}_{able}^+ be the set of non-negative measurable functions.

• If $\phi_n \in \mathcal{S}_{imple}$ and $\phi_n \nearrow f$ for some $f \in \mathcal{M}_{able}$, then

$$\lim_n \int \phi_n d\mu = \int f d\mu$$

• The map $\int \Box d\mu : \mathcal{M}_{able}^+ \to \mathbb{R}$ is linear.

Proof. Let $f, g \in \mathcal{M}^+_{able}$, $\phi \in \mathcal{S}^+_{imple} \nearrow f$, and $\psi \in \mathcal{S}^+_{imple} \nearrow g$. Then

- $\int f + g \ d\mu = \int \lim_{n} (\phi_n + \psi_n) \ d\mu$ = $\lim_{n} \int (\phi_n + \psi_n) \ d\mu = \int f \ d\mu + \int g \ d\mu$
- $\int \alpha f \ d\mu = \int \lim_{n} \alpha \phi_{n} d\mu = \alpha \lim_{n} \int \phi_{n} \ d\mu = \int f \ d\mu$.

Proposition. (3.2.7: f = 0 almost everywhere)

Let $f \in \mathcal{M}_{able}^+$. Then

$$\int f d\mu = 0 \iff f = 0 \text{ a.e.}$$

Proof.

- If $f \in \mathcal{S}^+_{imple}$, then the statement is immediate.
- If f=0 a.e. and $\phi \leq f$, then $\phi=0$ a.e., and hence $\int f = \sup \{ \int \phi : \phi \leq f, \phi \in \mathcal{S}^+_{imple} \} = 0.$
- Conversely, let $\int f \ d\mu = 0$. Then

$$0 = \int f \ d\mu \ge \frac{1}{n} \mu(\{f > \frac{1}{n}\}), \quad n = 1, 2, \cdots$$

$$f = 0$$
 a.e. Why?

$$\mu(\lbrace f > 0 \rbrace) = \mu\left(\bigcup_{n=1}^{\infty} \lbrace f > \frac{1}{n} \rbrace\right) \le \bigcup_{n=1}^{\infty} \mu(\lbrace f > \frac{1}{n} \rbrace) = 0.$$

Lemma. (3.2.9: Fatou's Lemma)

For any sequence $f_n \in \mathcal{M}^+_{able}$, we have

$$\int \lim_{n} \inf f_n d\mu \leq \lim_{n} \inf \int f_n d\mu$$

Proof.

$$\liminf_{n} \int f_n \ d\mu = \sup_{k \ge 1} \inf_{j \ge k} \int f_j \ d\mu \ge \sup_{k \ge 1} \int \inf_{j \ge k} f_j \ d\mu$$

Since
$$g_k = \inf_{j \ge k} f_j \nearrow$$
,

$$\sup_{k>1} \int \inf_{j\geq k} f_j \ d\mu = \lim_{k\to\infty} \int \inf_{j\geq k} f_j \ d\mu = \int \lim_{k\to\infty} \inf_{j\geq k} f_j \ d\mu$$

$L^1(X, d\mu)$: Complete metric space

Definition. (Integrability)

Let (X, \mathcal{M}, μ) be measure space. A function $f: X \to \mathbb{R}$ is integrable if $f \in \mathcal{M}_{able} \& \int |f| d\mu < \infty$. We denote by $L^1(X, d\mu)$ the class of all integrable functions. For $f \in L^1(X, d\mu)$, we define

$$\int f \ d\mu \ = \ \int f^+ \ d\mu \ - \ \int f^- \ d\mu$$

Question: Prove that $L^1(X, d\mu)$ is a complete normed space (or Banach space) when it is equipped with the norm

$$||f|| = \int |f| d\mu$$
 (its metric: $d(f,g) = ||f-g||$)

To answer this question, we need to study several convergence theorems.

1 1

Proposition.

 $L^1(X, d\mu)$ is a normed space equipped with the norm

$$||f|| = \int |f| d\mu$$

This means that $L^1(X, d\mu)$ is a vector space satisfying

- 1. ||f|| > 0, $\forall f \in L^1$
- 2. ||f|| = 0 iff f = 0 a.e..
- 3. $\|\lambda f\| = |\lambda| \|f\|$, $\forall f \in L^1$ and every scaler λ .
- 4. $||f + g|| \le ||f|| + ||g||$, $\forall f, g \in L^1$

The proof is the straightforward.

Theorem. (Lebesgue Dominate Convergence Theorem)

Assume $\{f_n\} \subset L^1$ such $f_n \to f$ a.e. and $\exists g \in L^1$ so that $|f_n| \leq g$ a.e. for all n. Then

$$f \in L^1$$
 & $\int f d\mu = \lim_{n} \int f_n d\mu$

Proof. Since $g + f_n \ge 0$,

$$\int \liminf_{n} (g + f_n) \ d\mu \stackrel{\textit{Fatou's}}{\leq} \liminf_{n} \int (g + f_n) \ d\mu$$

Hence, $\int f d\mu \leq \lim_n \inf \int f_n d\mu$.

Applying the same argument to the sequence $g - f_n \ge 0$, we obtain

$$-\int f d\mu \leq \liminf_{n} \int (-f_{n}) d\mu = -\lim_{n} \sup \int f_{n} d\mu$$

Example. (Gaussian function)

The fundamental solution of the heat equation in 1-D is

$$G(x,t) = \frac{1}{\sqrt{4\pi t}}e^{-x^2/4t}.$$

Then

$$\int_{\mathbb{D}} G(x,t) \ dx = 1 \quad \text{ for all } t > 0 \quad \& \lim_{t \to 0^+} G(x,t) = 0 \ \text{ a.e.}$$

• Let $f_n(x) = G(x, 1/n)$. Then $f_n \to f = 0$ a.e. and

$$\int f d\mu = 0 \neq 1 = \lim_{n} \int f_{n} d\mu$$

This is the reason why LDC requires the assumption that $\{f_n\}$ is **dominated** by a fixed L^1 -function g.

Corollary. (3.3.2)

Let $\{f_i\} \subset L^1$ s.t. $\sum_i \int |f_i| d\mu < \infty$. Then $\exists f \in L^1$ such that

$$\lim_{n\to\infty}\sum_{j=1}^n f_j = f \text{ a.e. } \& \int f \ d\mu = \sum_j \int f_j \ d\mu$$

(* Denote
$$f = \sum_{i=1}^{\infty} f_i$$
.)

- 1. Let $g_n = \sum_{j=1}^n |f_j|$ and $g = \sum_{j=1}^\infty |f_j|$.
- 2. Since $g_n \nearrow g$, it follows from the monotone convergence theorem that

$$\int g d\mu = \lim_{n} \int g_{n} \ d\mu = \sum_{i} \int |f_{j}| \ d\mu < \infty$$

Hence, $g \in L^1$ and $g < \infty$ a.e.

3. Since $\left|\sum_{j=1}^{n} f_j\right| < g$ a.e and $g \in L^1$, the result follows by the Dominate Convergence Theorem.

Theorem. (3.3.3: S_{imple} is dense in L^1)

- S_{imple} is dense in L^1 , i.e., every element in L^1 is a L^1 -limit of a sequence of elements in S_{imple} .
- $C_0(\mathbb{R})$ is dense in $L^1(\mathbb{R}, \mathcal{M}, \mu)$, where μ is any Borel measure on \mathbb{R} . Here, the definition of $C_0(\mathbb{R})$ is $C_0(\mathbb{R}) := \{ f \in C(\mathbb{R}) : \exists N \ s.t. \ f(x) = 0 \ for \ |x| > N \}$.

Proof of the first statement: S_{imple} is dense in L^1 .

• Let $f \in L^1$. By Thm 3.2.1,

$$\exists \ \phi_n \in \mathcal{S}_{imple} \ \ s.t. \ \ \phi_n \to f \ \ a.e. \ \ \& \ \ |\phi_n| < |f| \ \ a.e.$$

• By LDCT(Lebesgue Dominate Convergence Theorem), $\|\phi_n - f\| = \int |\phi_n - f| \ d\mu \to 0$. This completes the proof.

Proof of the second statement: $C_0(\mathbb{R})$ is **dense** in $L^1(\mathbb{R}, \mathcal{M}, \mu)$.

- 1. Since S_{imple} is **dense** in L^1 , it suffices to prove that any $\phi \in S_{imple} \cap L^1$ can be approximated by a sequence $\{f_n\} \subset C_0(\mathbb{R})$.
- 2. If $\phi = \chi_{(0,1)}$, then a sequence of continuous functions

$$f_n(x) := \begin{cases} 1 & \text{if } 0 \le x \le 1\\ 0 & \text{if } 0 < -1/n\\ 0 & \text{if } x > 1 + 1/n \end{cases} \quad \rightarrow \quad \phi = \chi_{(0,1)} \text{ in } L^1\text{-sense.}$$
 linear otherwise

Indeed,
$$||f_n - \phi|| = 1/n \to 0$$
.

3. Similarly, if A is a finite union of bounded open intervals, then $\phi = \chi_A$ can be approximated by a sequence $\{f_n\} \subset C_0(\mathbb{R})$.

Continue....

4. Let *E* be a Borel measurable set with $\mu(E) = ||\chi_E|| < \infty$. That is,

$$\mu(E) = \inf \left\{ \sum_j \mu(I_j) : E \subset \cup I_j, I_j = (a_j, b_j) \right\} < \infty$$

5. Hence, for any $\epsilon > 0$, \exists a finite union of open intervals $A = \bigcup_{i=1}^{N} I_i$ such that

$$\|\chi_{E} - \chi_{A}\| = \mu(E \triangle A) < \epsilon$$

where $E \triangle A = (E \setminus A) \cup (A \setminus E)$.

6. Since $\epsilon > 0$ is arbitrary, χ_E can be approximated by a sequence $\{f_n\} \subset C_0(\mathbb{R})$.

Theorem. (Riemann \int v.s. Lebesgue \int)

Let $f:[0,1] \to \mathbb{R}$ be a bounded and Riemann integrable. Then

- $f \in L^1([0,1], d\mu)$ where $\mu((a,b]) = b a$.
- Lebesgue and Riemann integrals agrees.
- 1. Let $\mathcal{P}_n = \{j2^{-n} : j = 1, \dots, 2^n\}$, a partition of [a, b].
- 2. Denote $E_{n,j} := (j2^{-n}, (j+1)2^{-n}]$ and

$$m_{n,j} := \inf_{x \in E_{n,j}} f(x)$$
 $M_{n,j} := \sup_{x \in E_{n,j}} f(x)$
 $\phi_n = \sum_{j=1}^{2^n} m_{n,j} \chi_{E_{n,j}}$ $\psi_n = \sum_{j=1}^{2^n} M_{n,j} \chi_{E_{n,j}}$

- 3. Therefore $\phi_n \leq \phi_{n+1} \leq f \leq \psi_{n+1} \leq \psi_n$.
- 4. Hence, $\exists \psi = \lim_n \psi_n$ and $\exists \psi = \lim_n \psi_n$.
- 5. By def'n, $L(\mathcal{P}_n, f) = \int_0^1 \phi_n(x) dx \le U(\mathcal{P}_n, f) = \int_0^1 \psi_n(x) dx$

Continue....

6. By definition of the Lebesgue integral for simple functions,

$$L(\mathcal{P}_n, f) = \int \phi_n d\mu \& U(\mathcal{P}_n, f) = \int \psi_n d\mu$$

- 7. From Riemann integrability of f, $\inf_n U(\mathcal{P}_n, f) = \sup_n L(\mathcal{P}_n, f) = \int_0^1 f(x) dx$
- 8. By LDCT,

$$\int \phi d\mu = \lim_{n} \int \phi_{n} d\mu = \lim_{n} U(\mathcal{P}_{n}, f)$$

$$= \inf_{n} U(\mathcal{P}_{n}, f) = \sup_{n} L(\mathcal{P}_{n}, f) = \lim_{n} L(\mathcal{P}_{n}, f)$$

$$= \lim_{n} \int \psi_{n} d\mu = \int \psi d\mu$$

- 9. Hence, $\int \phi d\mu = \int_0^1 f dx = \int \phi d\mu$
- 10. Therefore, $\psi = f = \phi$ a.e..

Theorem. (3.4.3)

Let $f(x,t): X \times [a,b] \to \mathbb{R}$ be a mapping. Suppose that f is differentiable with respect to t and that

$$g(x) := \sup_{t \in [a,b]} \left| \frac{\partial}{\partial t} f(x,t) \right| \in L^1(X,d\mu)$$

Then $F(t) = \int f(x,t) d\mu$ is differentiable on $a \le t \le b$ and

$$\frac{\partial}{\partial t} \int f(x,t) d\mu = \int \frac{\partial}{\partial t} f(x,t) d\mu$$

For each $t \in (a, b)$, we can apply LDCT to the sequence

$$h_n(x) = \frac{f(x, t_n) - f(x, t)}{t_n - t}, \quad t_n \to t$$

(: $|h_n| \leq g$ from the mean value theorem.)