
Chapter 3. Measurable functions

• A function f : Rn → R is Lebesgue measurable if f −1(U) is
Lebesgue measurable for every open set U.

• Let X be a metric space and let (X ,M, µ) be a measure
space. A function f : X → R is measurable if f −1(U) ∈M
whenever U is an open or closed interval, or open ray
(a,∞). It is a simple exercise to show the followings:
• f −1(E ∪ F ) = f −1(E ) ∪ f −1(F ).
• f −1(E ∩ F ) = f −1(E ) ∩ f −1(F ).
• f −1(E c) =

[
f −1(E )

]c
.

• In particular, f : X → R is measurable if
{x ∈ X : f (x) > a} ∈ M for all a ∈ R.

• Given two function f and g we define

f ∨ g = max{f , g} f ∧ g = min{f , g}
f + = f ∨ 0 f − = (−f ) ∨ 0
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Proposition. (3.1.2)

If f and g are measurable, then so are
f + g , fg , f ∨ g , f ∧ g , f +, f −, and |f |.
Proof. We will denote {f > a} := {x ∈ X : f (x) > a}
• f + g is measurable because
∀a ∈ R, {f + g > a} = ∪t∈Q ({f > t} ∩ {g > a− t}).
Q := the set of rational numbers.

• f 2 is measurable since {f 2 > a} = X if a < 0 and
∀a ≥ 0, {f 2 > a} = {f >

√
a} ∪ {f < −√a}.

• fg is measurable because fg = (f +g)2−f 2−g2

2 .

• f + is measurable because {f + > a} = X if a < 0 &
{f + > a} = {f > a} if a ≥ 0.

• |f | is measurable because |f | = f + + f −.

• f ∨ g , f ∧ g are measurable because
f ∨ g = f +g+|f−g |

2 , f ∧ g = f +g−|f−g |
2 .
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Theorem. (3.1.3)

If {fj} is a sequence of measurable functions, then
lim supj fj , lim supj fj are measurable.

Proof. Denote φ := lim supj fj .

1. Recall φ := lim supj fj = limn→∞ gn where gn = supj≥n fj .

2. {gn > a} = ∪j≥n{fj > a}. Hence, gn is measurable.

3. Since gn ↘ , lim supj fj = infn≥0 gn.

4. Hence, {φ > a} = ∩∞n=1{gn > a}.
5. Therefore φ is measurable.

6. A similar proof shows that lim inf j fj is measurable.
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3.2 Integration of non-negative functions

Let (X ,M, µ) be measure space where X is a metric space. If
your mathematical background is poor, you regard X as
X = R2 and µ as the standard Lebesgue measure, that is,
µ(A) = the area of A. Throughout this lecture, E , Ej are a
measurable set.
• The characteristic function of E denoted by χE is the

function defined by

χE (x) =

{
1 if x ∈ E
0 otherwise

• A simple function is a finite linear combination of
characteristic functions

φ =
n∑

j=1

cjχEj

Hence, Ej = {φ = cj}.
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Theorem. (3.2.1)

Let f : X → R be measurable and f ≥ 0. Then

φn =
22n−1∑

k=0

k2−nχEn,k
+ 2nχFn ↗ f

where En,k = f −1((k2−n, (k + 1)2−n]) , Fn = f −1((2n,∞]).
Moreover, each φn satisfies

φn ≤ φn+1 & 0 ≤ f (x)− φn(x) ≤ 2−n for x ∈ X \ Fn

Proof. Straightforward.
From the above theorem, we can prove that for any
measurable function f there is a sequence of simple
functions φn such that φn → f on any set on which f is
bounded.
Why? f = f + − f − where f = max{f , 0} and f − = max{−f , 0}.
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Let (X ,M, µ) be a measure space.

• Definition of Lebesgue Integral for simple functions The
integral of a measurable simple function φ =

∑n
j=1 cjχEj

is
defined to be ∫

φdµ =
n∑

j=1

cj µ(Ej)

• We use the convention that 0 · ∞ = 0.

• If φ is a simple function, then φ ≥ 0 =⇒ ∫
φdµ ≥ 0.

• Let Simple be a vector space of measurable simple
functions. Then the integral

∫
¤dµ can be viewed as a linear

functional on Simple , that is,
∫

¤ dµ : Simple → R is linear.
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Lemma. (3.2.2)

Let (X ,M, µ) be a measure space. Given a non-negative,
measurable simple function φ and A ∈M, define

ν(A) =

∫

A
φ dµ =

∫

X
φχA dµ

Then (X ,M, ν) is also a measure space.

Proof. Let φ =
∑n

k=1 ckχEk
where Ek ∈M. Assume A = ∪jAj where

Aj ∈M are mutually disjoint. Then

ν(A) =

∫
φχA dµ =

n∑

k=1

∫
ckχEk

χAdµ =
n∑

k=1

∫
ckχEk∩Adµ

=
n∑

k=1

ckµ(Ek ∩ A) =
n∑

k=1

∞∑

j=1

ckµ(Ek ∩ Aj)

=
∞∑

j=1

n∑

k=1

ckµ(Ek ∩ Aj) =
∞∑

j=1

∫

Aj

φdµ =
∑

j

ν(Aj)
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Definition. (Lebesgue integral of non-negative measurable
function)

The integral of a non-negative measurable function f is defined by

∫
f dµ = sup

{∫
φdµ : φ ≤ f & φ ∈ Simple

}

Recall that the integral of a measurable simple function
φ =

∑n
j=1 cjχEj

is defined to be

∫
φdµ =

n∑

j=1

cj µ(Ej)

From the definition, we obtain

f ≤ g =⇒
∫

fdµ ≤
∫

gdµ
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Theorem. (3.2.3: MCT(Monotone Convergence Thm))

If {fn} is a nondecreasing sequence of non-negative measurable
functions, then

∫
lim
n

fn dµ = lim
n

∫
fn dµ

• Since fn ↗, limn fn = ∃f and is measurable. Note that it is possible

that f (x) = ∞ at some x .

• Since
∫

fndµ ↗ and fn ≤ f ,
∫

fn ≤
∫

f and therefore

lim
n

∫
fndµ ≤

∫
f dµ

• It remains to prove limn

∫
fndµ ≥ ∫

f dµ.
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Theorem. (3.2.3: Continue ......MCT)

If fn ↗, then
∫

limn fn dµ = limn

∫
fn dµ

Continue... Aim to prove limn

∫
fndµ ≥ ∫

f dµ.

• Since
∫

f dµ = sup{∫ φdµ : φ ≤ f , φ ∈ Simple}, it suffices
to prove that for any α, 0 < α < 1 and any φ ∈ Simple with
φ ≤ f ,

lim
n

∫
fndµ ≥ α

∫
φ dµ

• Let En = {fn ≥ αφ}. Then

∫
fndµ ≥

∫

En

fndµ ≥
∫

En

αφ dµ :
define
= α ν(En)

• Since ν is a measure and En ↗ X ,
limn ν(En) = ν(X ) =

∫
φdµ. Thus, limn

∫
fndµ ≥ α

∫
φdµ.
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Corollary. (3.2.4: φn ↗ f )

Let M+
able be the set of non-negative measurable functions.

• If φn ∈ Simple and φn ↗ f for some f ∈Mable , then

lim
n

∫
φndµ =

∫
fdµ

• The map
∫

¤dµ : M+
able → R is linear.

Proof. Let f , g ∈M+
able , φ ∈ S+

imple ↗ f , and ψ ∈ S+
imple ↗ g .

Then

• ∫
f + g dµ =

∫
limn(φn + ψn) dµ

=limn

∫
(φn + ψn) dµ =

∫
f dµ +

∫
g dµ

• ∫
αf dµ =

∫
limn αφndµ=α limn

∫
φn dµ =

∫
f dµ.
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Proposition. (3.2.7: f = 0 almost everywhere)

Let f ∈M+
able . Then

∫
fdµ = 0 ⇐⇒ f = 0 a.e.

Proof.
• If f ∈ S+

imple , then the statement is immediate.
• If f = 0 a.e. and φ ≤ f , then φ = 0 a.e., and hence∫

f = sup{∫ φ : φ ≤ f , φ ∈ S+
imple} = 0.

• Conversely, let
∫

f dµ = 0. Then

0 =

∫
f dµ ≥ 1

n
µ({f >

1

n
}), n = 1, 2, · · ·

∴ f = 0 a.e. Why?

µ({f > 0}) = µ

(
∪∞n=1{f >

1

n
}
)
≤ ∪∞n=1µ({f >

1

n
}) = 0.

12



Lemma. (3.2.9: Fatou’s Lemma)

For any sequence fn ∈M+
able , we have

∫
lim
n

inf fn dµ ≤ lim
n

inf

∫
fn dµ

Proof.

lim
n

inf

∫
fn dµ = sup

k≥1
inf
j≥k

∫
fj dµ ≥ sup

k≥1

∫
inf
j≥k

fj dµ

Since gk = inf j≥k fj ↗,

sup
k≥1

∫
inf
j≥k

fj dµ = lim
k→∞

∫
inf
j≥k

fj dµ =

∫
lim

k→∞
inf
j≥k

fj dµ
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L1(X , dµ): Complete metric space

Definition. (Integrability)

Let (X ,M, µ) be measure space. A function f : X → R is
integrable if f ∈Mable &

∫ |f |dµ < ∞. We denote by L1(X , dµ)
the class of all integrable functions. For f ∈ L1(X , dµ), we define

∫
f dµ =

∫
f + dµ −

∫
f − dµ

Question: Prove that L1(X , dµ) is a complete normed space
(or Banach space) when it is equipped with the norm

‖f ‖ =

∫
|f |dµ (its metric : d(f , g) = ‖f − g‖ )

To answer this question, we need to study several convergence
theorems.
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Proposition.

L1(X , dµ) is a normed space equipped with the norm

‖f ‖ =

∫
|f |dµ

This means that L1(X , dµ) is a vector space satisfying

1. ‖f ‖ ≥ 0, ∀f ∈ L1

2. ‖f ‖ = 0 iff f = 0 a.e..

3. ‖λf ‖ = |λ|‖f ‖, ∀f ∈ L1 and every scaler λ.

4. ‖f + g‖ ≤ ‖f ‖+ ‖g‖, ∀f , g ∈ L1

.

The proof is the straightforward.
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Theorem. ( Lebesgue Dominate Convergence Theorem )

Assume {fn} ⊂ L1 such fn → f a.e. and ∃g ∈ L1 so that
|fn| ≤ g a.e. for all n. Then

f ∈ L1 &

∫
f dµ = lim

n

∫
fn dµ

Proof. Since g + fn ≥ 0,

∫
lim
n

inf (g + fn) dµ
Fatou′s Lemma≤ lim

n
inf

∫
(g + fn) dµ

Hence,
∫

f dµ ≤ limn inf
∫

fn dµ.
Applying the same argument to the sequence g − fn ≥ 0, we obtain

−
∫

f dµ ≤ lim
n

inf

∫
(−fn) dµ = −lim

n
sup

∫
fn dµ
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Example. (Gaussian function)

The fundamental solution of the heat equation in 1-D is

G (x , t) =
1√
4πt

e−x2/4t .

Then
∫

R
G (x , t) dx = 1 for all t > 0 & lim

t→0+
G (x , t) = 0 a.e.

• Let fn(x) = G (x , 1/n). Then fn → f = 0 a.e. and

∫
f dµ = 0 6= 1 = lim

n

∫
fn dµ

This is the reason why LDC requires the assumption that {fn}
is dominated by a fixed L1-function g .
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Corollary. (3.3.2)

Let {fj} ⊂ L1 s.t.
∑

j

∫ |fj | dµ < ∞. Then ∃ f ∈ L1 such that

lim
n→∞

n∑

j=1

fj = f a.e. &

∫
f dµ =

∑

j

∫
fj dµ

(> Denote f =
∑∞

j=1 fj .)

1. Let gn =
∑n

j=1 |fj | and g =
∑∞

j=1 |fj |.
2. Since gn ↗ g , it follows from the monotone convergence

theorem that∫
gdµ = lim

n

∫
gn dµ =

∑

j

∫
|fj | dµ < ∞

Hence, g ∈ L1 and g < ∞ a.e.

3. Since
∣∣∣∑n

j=1 fj

∣∣∣ < g a.e and g ∈ L1, the result follows by the

Dominate Convergence Theorem.
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Theorem. (3.3.3: Simple is dense in L1)

• Simple is dense in L1, i.e., every element in L1 is a L1−limit of
a sequence of elements in Simple .

• C0(R) is dense in L1(R,M, µ), where µ is any Borel measure
on R. Here, the definition of C0(R) is
C0(R) := {f ∈ C (R) : ∃N s.t. f (x) = 0 for |x | > N}.

Proof of the first statement: Simple is dense in L1.

• Let f ∈ L1. By Thm 3.2.1,

∃ φn ∈ Simple s.t. φn → f a.e. & |φn| < |f | a.e.

• By LDCT(Lebesgue Dominate Convergence Theorem),
‖φn − f ‖ =

∫ |φn − f | dµ → 0. This completes the proof.
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Proof of the second statement: C0(R) is dense in L1(R,M, µ).

1. Since Simple is dense in L1, it suffices to prove that any
φ ∈ Simple ∩ L1 can be approximated by a sequence
{fn} ⊂ C0(R).

2. If φ = χ(0,1), then a sequence of continuous functions

fn(x) :=





1 if 0 ≤ x ≤ 1
0 if 0 < −1/n
0 if x > 1 + 1/n

linear otherwise

→ φ = χ(0,1) in L1-sense.

Indeed, ‖fn − φ‖ = 1/n → 0.

3. Similarly, if A is a finite union of bounded open intervals, then
φ = χA can be approximated by a sequence {fn} ⊂ C0(R).
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Continue....

4. Let E be a Borel measurable set with µ(E ) = ‖χE‖ < ∞.
That is,

µ(E ) = inf





∑

j

µ(Ij) : E ⊂ ∪Ij , Ij = (aj , bj)



 < ∞

5. Hence, for any ε > 0, ∃ a finite union of open intervals
A = ∪N

j=1Ij such that

‖χE − χA‖ = µ(E4A) < ε

where E4A = (E \ A) ∪ (A \ E ).

6. Since ε > 0 is arbitrary, χE can be approximated by a
sequence {fn} ⊂ C0(R).
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Theorem. (Riemann
∫

v.s. Lebesgue
∫

)

Let f : [0, 1] → R be a bounded and Riemann integrable. Then

• f ∈ L1([0, 1], dµ) where µ((a, b]) = b − a.

• Lebesgue and Riemann integrals agrees.

1. Let Pn = {j2−n : j = 1, · · · , 2n}, a partition of [a, b].

2. Denote En,j := (j2−n, (j + 1)2−n] and

mn,j := infx∈En,j
f (x) Mn,j := supx∈En,j

f (x)

φn =
∑2n

j=1 mn,j χEn,j
ψn =

∑2n

j=1 Mn,jχEn,j

3. Therefore φn ≤ φn+1 ≤ f ≤ ψn+1 ≤ ψn.

4. Hence, ∃ψ = limn ψn and ∃ψ = limn ψn.

5. By def’n, L(Pn, f ) =
∫ 1
0 φn(x)dx ≤ U(Pn, f ) =

∫ 1
0 ψn(x)dx
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Continue....

6. By definition of the Lebesgue integral for simple functions,

L(Pn, f ) =

∫
φndµ & U(Pn, f ) =

∫
ψndµ

7. From Riemann integrability of f ,
infn U(Pn, f ) = supn L(Pn, f ) =

∫ 1
0 f (x) dx

8. By LDCT,

∫
φdµ = lim

n

∫
φn dµ = lim

n
U(Pn, f )

= inf
n

U(Pn, f ) = sup
n

L(Pn, f ) = lim
n

L(Pn, f )

= lim
n

∫
ψn dµ =

∫
ψdµ

9. Hence,
∫

φdµ =
∫ 1
0 fdx =

∫
φdµ

10. Therefore, ψ = f = φ a.e..
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Theorem. (3.4.3)

Let f (x , t) : X × [a, b] → R be a mapping. Suppose that f is
differentiable with respect to t and that

g(x) := sup
t∈[a,b]

∣∣∣∣
∂

∂t
f (x , t)

∣∣∣∣ ∈ L1(X , dµ)

Then F (t) =
∫

f (x , t)dµ is differentiable on a ≤ t ≤ b and

∂

∂t

∫
f (x , t)dµ =

∫
∂

∂t
f (x , t)dµ

For each t ∈ (a, b), we can apply LDCT to the sequence

hn(x) =
f (x , tn)− f (x , t)

tn − t
, tn → t

(∵ |hn| ≤ g from the mean value theorem.)
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