Chapter 3. Measurable functions

e A function f : R” — R is Lebesgue measurable if f~1(U) is
Lebesgue measurable for every open set U.

e Let X be a metric space and let (X, M, 1) be a measure
space. A function f : X — R is measurable if f~1(U) ¢ M
whenever U is an open or closed interval, or open ray
(a,00). It is a simple exercise to show the followings:

o FYEUF)=fYE)UFL(F).
o F"YENF)=FfYE)NFfL(F).
o FI(E) = [F(E)]

e In particular, f : X — R is measurable if

{xe X : f(x)>a} € M for all acR.

e Given two function f and g we define

fVvg=max{f, g} fAg=min{f, g}
fr=Fvo f~=(~F)VO



Proposition. (3.1.2)

If f and g are measurable, then so are
f+g, fg, fVg, fAg, fT, f~, and |f|.

Proof. We will denote {f > a} := {x € X : f(x) > a}
e f + g is measurable because
VaeR, {f+g>a}=Uco({f >t}N{g>a—t}).
Q := the set of rational numbers.

e f2is measurable since {f2 > a} = X if a < 0 and

Ya>0, {f>>a}={f>a}u{f<—a}

] 2_fr2_ 2
e fg is measurable because fg = (Hg)%-

e fT is measurable because {f* >a}l =X ifa<0&
{ft>a}={f>a}ifa>0.
e |f| is measurable because |f| = fT + f~.

e Vg, f g are measurable because
f+g+|f— frg—|f—
fvg= g2| gl7 fAg= gz\ sl
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Theorem. (3.1.3)

If {f;} is a sequence of measurable functions, then
limsup; f;, limsup; f; are measurable.

Proof. Denote ¢ := limsup; f;.

1.

ok W

Recall ¢ := limsup; f; = limp_. g, where g, = supj>,, f;.
{gn > a} = Uj>p{f; > a}. Hence, g, is measurable.
Since gn "\, , limsup; f; = inf,>0 g

Hence, {¢ > a} = N2, {g, > a}.

Therefore ¢ is measurable.

A similar proof shows that liminf; f; is measurable.



3.2 Integration of non-negative functions

Let (X, M, 1) be measure space where X is a metric space. If
your mathematical background is poor, you regard X as

X = R? and 1 as the standard Lebesgue measure, that is,
p(A) = the area of A. Throughout this lecture, E, E; are a

measurable set.
e The characteristic function of E denoted by x g is the

function defined by

(x) = 1 if xe E
XEXJ =11 0 otherwise

e A simple function is a finite linear combination of
characteristic functions

n
o=> Gxg
=1

Hence, Ej = {¢ = ¢j}.



Theorem. (3.2.1)
Let f : X — R be measurable and f > 0. Then

22n_1

¢n= > k2"XE,, + 2"xr, S f
k=0

where E, = f1((k27", (k + 1)27") , F, = f~1((2",0]).
Moreover, each ¢, satistfies

On < bny1 & 0<f(x)—odn(x)<27" forxe X\ F,

Proof. Straightforward.

From the above theorem, we can prove that for any
measurable function f there is a sequence of simple
functions ¢, such that ¢, — f on any set on which f is
bounded.

Why? f =fT — f~ where f = m:ax{f,O} and f~ = max{—f,0}.



Let (X, M, 1) be a measure space.

¢ Definition of Lebesgue Integral for simple functions The
integral of a measurable simple function ¢ = Z}:l CiXE; IS

defined to be .
[ odn=>" u(e)
j=1

e We use the convention that 0- oo = 0.
e If ¢ is a simple function, then ¢ >0 = [ ¢dp > 0.
e Let Si,pe be a vector space of measurable simple

functions. Then the integral [ Odp can be viewed as a linear
functional on Sjmpre, that is, [0 du : Simple — R is linear.



Lemma. (3.2.2)

Let (X, M, ) be a measure space. Given a non-negative,
measurable simple function ¢ and A € M, define

./A</>due/x</>xA du

Then (X, M,v) is also a measure space.

Proof. Let ¢ = >} _; ckxg, where Ex € M. Assume A = U;A; where
Aj € M are mutually disjoint. Then

v(A) = /¢>XA dp = Z/CkXEkXAdu Z/ckxEmAdu
= ZCkMEkﬂA ZZCkMEkﬂA)
k=1 k=1 j=1

ZZcmEmA Z/ odp = Aj)

Jj=1 k=1



Definition. (Lebesgue integral of non-negative measurable

function)

The integral of a non-negative measurable function f is defined by

/fdu:sup{/d)du . ¢§f & ¢€Simple}

Recall that the integral of a measurable simple function
¢ = > 71 ¢XE; is defined to be

/@du ZCJ w(E

From the definition, we obtain

< —  [fan< [
O



Theorem. (3.2.3: MCT(Monotone Convergence Thm))

If {f,} is a nondecreasing sequence of non-negative measurable

functions, then
/Iimf,, du = Iim/f,, du

e Since f, /', lim,f, = 2f and is measurable. Note that it is possible
n n'n

that f(x) = oo at some x.

e Since [ fodu / and f, < f, [f, < [ f and therefore

Iim/fndu < /f du

e It remains to prove lim, [ f,dp > [ dp.

0O



Theorem. (3.2.3: Continue

Iffy /7, then [lim,f, dp = lim, [ £, du

Continue... Aim to prove lim, [ f,du > [ du.

e Since [fdu=sup{[odp : ¢ <f, ¢ € Simple}, it suffices
to prove that for any o, 0 < o <1 and any ¢ € Sjnple with

¢ <f,
Iim/f,,du > a/</) du

o Let E, = {f, > a¢}. Then

/fndu > / fodp > / ad du define a v(E,)

e Since v is a measure and E, " X,
lim, v(E,) = v(X) = [¢du. Thus, lim, [ frdp > a [ ¢dp.
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Corollary. (3.2.4: ¢, / f)

Let M:ble be the set of non-negative measurable functions.
o If ¢ € Simple and ¢, /" f for some f € Mple, then

Iim/gb,,du = /fdu
n
o The map [Odu : M3, — R is linear.

Proof. Let f,g € ./\/l;rb,e, ¢ € S,-anp,e ' f,and ¢ € S;rnp,e /' g.
Then
¢ ff—}—g dp = f“mn(qsn‘i‘wn) du
=lim, [(¢n +n) dp= [ du+ [ g du
o [af du= [lim,ap,du=alim, [ ¢, du= [f dp.
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Proposition. (3.2.7: f = 0 almost everywhere)

Let f € M,,,. Then

/fd,uzO <~ f=0a.e

Proof.
o If fe S,.J[n o then the statement is immediate.
o If f=0a.e. and ¢ <f, then ¢ =0 a.e., and hence
[f=sup{[o : ¢ <T, gbGSi'fnp,e}:O.

e Conversely, let [f du =0. Then
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Lemma. (3.2.9: Fatou's Lemma)

For any sequence f, € M:b,e, we have
/ liminf f, dp < Iiminf/ fn du
n n

Proof.

liminf fo du = su inf/f-d > su / inff; d
n / a kzlijzk i ak k; >k’ K

Since gk = infj=xf; /',

inff; dp =i inffi du= [ lim inff; d
i;‘i/ inff du= jim [ ntf du= [ im inf5 o
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[(X,du): Complete metric space

Definition. (Integrability)

Let (X, M, 1) be measure space. A function f : X — R is
integrable if f € Mapie & [ |f|du < co. We denote by L1(X, du)
the class of all integrable functions. For f € L*(X,du), we define

/fd,u:/f+du—/fd,u

Question: Prove that L1(X, du) is a complete normed space
(or Banach space) when it is equipped with the norm

I£l = [ Ifldu (s metric: d(f.g) = I - ] )

To answer this question, we need to study several convergence

theorems.
1A



Proposition.

LY(X, du) is a normed space equipped with the norm

il /|fdu

This means that L*(X, dp) is a vector space satisfying
L. [|f|l >0, Vel

2. ||[f||=0 ifff =0 a.e..
3. |IMF) = IAIFL Vf € L and every scaler \.
4 |If+el <Ilfll +llell,  vfgell

The proof is the straightforward.
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Theorem. ( Lebesgue Dominate Convergence Theorem )

Assume {f,} C LY such f,, — f a.e. and dg € Ll so that
|f,| < g a.e. for all n. Then

fel & /fdu—li,rp/ f, du

Proof. Since g + f, > 0,

Fatou’s Lemma

/ liminf (g +f,) du Iiminf/ (g+f) du

Hence, [ f du < lim,inf [ f, du.
Applying the same argument to the sequence g — f, > 0, we obtain

—/ fdu < Iiminf/ (=fn) du = —Iimsup/ fo du
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Example. (Gaussian function)

The fundamental solution of the heat equation in 1-D is

1 .
G(X, t):\/ﬁe /4t.

Then

t—0*

/G(x,t) dx=1 forallt>0 & lim G(x,t)=0 a.e.
R

o Let fo(x) = G(x,1/n). Then f, — f =0 a.e. and

/fdu:O 4 1:Iim/ f du

This is the reason why LDC requires the assumption that {7,}

is dominated by a fixed L!-function g.
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Corollary. (3.3.2)
Let {fi} C L' sit. 3°; [|fi| du < oo. Then 3 f € L* such that

n

lim Y £ =fae & /fdu:Z/ﬂ-du
' j

J=1

(> Denote f =32, f;.)

L Let g, =37 fj] and g =322, |f}].
2. Since g, /" g, it follows from the monotone convergence
theorem that

/gdulim/g,,du:Z/M\ du < o
J

Hence, g € [ and g < 00 a.e.
3. Since ’Z}’Zl 15’ < g a.eand g € L', the result follows by the

Dominate Convergence Theorem.
10



Theorem. (3.3.3: Simple is dense in L)

® Simple s dense in L, ie., every element in L' is a L1 —limit of
a sequence of elements in Simple-

e Co(R) is dense in LY(R, M, 1), where 1 is any Borel measure
on R. Here, the definition of Cy(R) is

G(R) :={f e C(R) : IN s.t. f(x)=0 for|x| > N}.

Proof of the first statement: Sjpple is dense in L
o Let f € L'. By Thm 3.2.1,

3 ¢n € Simple S-t. ¢n— f ae. & |pp| < |f| a.e.

e By LDCT(Lebesgue Dominate Convergence Theorem),
l¢n — Il = [ |¢n — | d — 0. This completes the proof.
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Proof of the second statement: Co(R) is dense in L}(R, M, y).

1. Since Simple is dense in L, it suffices to prove that any
@ € Simple N L' can be approximated by a sequence
{fa} C Go(R).

2. If ¢ = x(0,1), then a sequence of continuous functions

1 if0<x<1
) o ifo<-1/n B o
fo(x) = 0 ifx>1+1/n — ¢ =X, in L -sense.
linear otherwise

Indeed, ||f, — ¢[| =1/n— 0.

3. Similarly, if A is a finite union of bounded open intervals, then
¢ = xa can be approximated by a sequence {f,} C Co(R).

IaYa)



Continue....

4. Let E be a Borel measurable set with u(E) = ||xgl| < .
That is,

w(E) = inf Z,u(lj) : EcUl, = (aj, b)) < 00
J
5. Hence, for any ¢ > 0, 3 a finite union of open intervals
A= UJ-’Vzllj such that

Ixe — xall = H(EAA) < e

where EAA=(E\ A)U(A\ E).
6. Since € > 0 is arbitrary, xg can be approximated by a
sequence {f,} C Go(R).
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Theorem. (Riemann [ v.s. Lebesgue [)

Let f : [0,1] — R be a bounded and Riemann integrable. Then
o feL([0,1],du) where u((a,b]) = b— a.
e lebesgue and Riemann integrals agrees.

1. Let Pp={j27" : j=1,---,2"}, a partition of [a, b].
2. Denote Epj:= (j27",(j+1)27"] and

Mpj = infxek, ; f(x) Mpj:= SUPer f(x)
) 2n
Pn = Zj:]_ an XEn,j w” - E_] 1 M 7./XEI‘IJ

3. Therefore (Z)n < gbn—&—l < f < wn—l—l < wn-
4. Hence, 3¢ = lim, 1, and 3¢ = limp ¥y,
5. By def'n Pn, f fo (/)n dX < U Pn, f) fO wn

~nN



Continue....

6.

By definition of the Lebesgue integral for simple functions,

L(P,, f) = /ondu & U(P,,f) /wndu

From Riemann integrablllty of f,
inf, U(P,, ) = sup, L(Py, ) fo
By LDCT,

/Qﬁd,u — Iim/gb,, dpi = lim U(Py, )
= inf U(Pp, f) =sup L(Pp, ) = lim L(P,, )

— tim [ du= [ v

. Hence, [ ¢dp = fol fdx = [ ¢du
10.

Therefore, ¢y = f = ¢ a.e..
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Theorem. (3.4.3)

Let f(x,t) : X x [a,b] — R be a mapping. Suppose that f is
differentiable with respect to t and that

ﬁf(x, t)

LY(X,d
T € L (X,dp)

g(x) == sup
te[a,b]

Then F(t) = [ f(x, t)du is differentiable on a < t < b and

0 3}
8t/f(x, t)du_/atf(x7 t)du

For each t € (a, b), we can apply LDCT to the sequence

f(x,tn) — f(x,t)
th —t

hn(x) =

, th—t

(.- |hn] < g from the mean value theorem.)
5N



