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Commercial dental CBCTs

« Commercial dental CBCT systems typically utilize a small flat panel detector, which generates a
polychromatic and truncated sinogram. Although some manufacturers may advertise the use of
photon counting detectors, these features are not widely adopted in dental CBCT practice.

« | try to provide clear explanations of the complex issues involved in commercial dental CBCT imaging,

specifically addressing shortcomings in existing methods.
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Structural difference between Conventional CT & dental CBCT

The difference is related to the rotation speed of the
CT gantry, where stability must be ensured during
continuous rotation at high centripetal forces.

Helical fan-beam

Scan time per revolution< 0.5s
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Price > $ 1 million

Expensive maintenance

Most dental CBCT equipment allows the patient to
scan while sitting or standing, requiring less space in
the dental office. Due to the centripetal force, the

scanner gantry cannot be rotated quickly.
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Circular cone-beam

Scan time: 8-24sec

Price < $ 0.05 million

o CBCT

Cheap maintenance



Inverse Problem in low-dose dental CBCT

The goal is to find a good CT-reconstruction function:

o Forward model
Projection data CT image u P
f : P - u N
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Reconstruction e .
function Transform Matrix
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X-ray Tube



The mathematical model of dental CBCT

The energy distribution n(E) can include photons

Projection Data: Beer-Lambert law with energies ranging from 0 keV up to 120 keV.

P(p,uv) = —lnfn(E) exp (—f uE(x,y,z)ds>dE
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Reconstruct the CT image p =

ug, (1.e., the tissue density at a

fixed energy E, ) from measured

projection data P.




FDK (Feldkamp-Davis-Kress) algorithm is a modified version of the

inverse Radon transform that is specifically designed for CBCT imaging.
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Dental CBCT is a powerful imaging modality that can provide high-quality, three-
dimensional images of the teeth, jawbones, and surrounding tissues. However, the
presence of metal implants can cause significant image artifacts and reduce the

overall image quality.

Why is the inverse problem of dental CBCT

ill-posed & Nonlinear?



The actual CT model is polychromatic (NOT monochromatic):

P(o,u,v) = —In [ n(E) exp(—C’uE((p, U, v)) dE with n(E) +# 6(E — E).

The X-ray tube emits \

polychr;)m:titc spectrum UE varies with E.
of photons.
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HIR ?
Why ill-posed: Metal-induced Artifacts

« The accuracy of the linear forward model is compromised due to the idealized
monochromatic assumption (n(E) = 6(E — E)).

« The presence of metal implants in CT scans leads to severe discrepancies in the

monochromatic assumption of the X-ray data, resulting in metal artifacts.




P(p,u,v) = —In [ n(E) exp(—Cug(p,u,v))dE

To simplify our explanation, we will limit our discussion to the 2D parallel-

beam model with an idealized monochromatic assumption.

n(x)é6(x- 0, —s) dx

RadOn Model P((p' S) — Rﬂ((P, S) — L

Radon Transform




Although commercial CT scanners are polychromatic, research in the
field of CT imaging largely relies on the simplifying assumption of a
monochromatic Radon model.

Monochromatic P(p,s) = Ru(p,s) = j

x)o(x -0, —5s)dx
Radon Model R2 i) ( v )

ohenete  P(p,s) ~ ~In [(E) exp(—Ryzp (0,5)d E
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This model discrepancy can cause the acquired data P to fall outside the range of the Radon transform,

indicating a discrepancy between the assumed model and the actual acquired data.

P=— lnfn(E) exp(—Rug)dE & Rangeof R




Toy model: bi-chromatic X-rays (64 and 80 KeV)

CT reconstruction problem based on Radon

. transform: Find u € R solving
Metal object : pgsxer = 64, Ugokev =5

1 1 0 0\ /14 Py
0 01 1|[H2)\_[P2=0
1 0 1 0]\ us P,
0 1 0 1/ \M4 P,
1 —64x2 1 —5x%x2
----------------------------- " — P1 — _log E e X _I_Ee X
Metal ‘ul Metal l,lz

Answer: There exist no solution. Why?
............................ sy P> =0 From 2" low, u3 = p, = 0. From 3 and 4t rows, u; = u,.
From 1t row, p; must satisfy

1 1
211 = uy + puy; = —log <E e 64x2 —|—Ee_5><2>
_ 1 64,1, 5
anc{ [:ll— log (ge +5e )
This is not possible because

1 1 1 —64 1 -5 1 —64x2 1 —5x2
P3=—1og<§e—64+§e—5> <2e T2€ )ijze T2°¢




D 1 1 0 0\ /i Py =12.5
- 0O 0 1 1 U2 _ Pz =0
e P, 1 0 1 0]\ us P; =75
s Lo 0 1 0 1/ \Ha P, =75
Py P,=P, What is u = argmin ||Apn —P|| ?
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Steaking artifacts



1 1 0 0\ /th Py
1 0O 0 1 1 U2 . P2=O . _ _

Consider the problem 101 olluwl= P, with P;=3 and P;=2

010 1/ W Fs . Source of

" streaking
o artifacts
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Question: How can we attain effective correction that significantly differs from the standard method?

<7 In metal artifact reduction in CT, correcting in sinogram space
e 341\ . . L .
s 5\ is challenging, therefore iterative approaches that incorporate
= both image space and sonogram space correction with

Zi ; regularization are commonly employed.
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The mismatch P — R(R~! P) # 0 produces metal artifacts.

 Based on the inherent nature of R™1, R(R! P)is the closest sinogram in the range space of R from P.
« According to Hilbert's projection theorem, the discrepancy P — R(R~! P) is orthogonal to Range of R.

« This discrepancy is mapped to streaking artifacts.

P—R(RP)

CT image Manifold

Sinogram space = Range of R




Handling metal-induced artifacts in dental CBCT is challenging due to complex
factors related to metal-bone and metal-tooth interactions, FOV truncation, offset

detector acquisition, scattering, non-linear partial volume effects, and others.

Artifact Expression due to the signogram inconsistency is:

Y0 = [[T,500 Prismath(,5) dsdg

)

Qs — argmin || 6(,0,5 — Ru ||

U

:R(:R—lpmismatch) — R(R_lp) _ Rﬂ*




Dental CBCT geometry

* The radiation beam of CBCT is cone-shaped, while that of conventional CT is fan-shaped.

« Typical dental CBCTs use offset detector to acquire only half of the extended FOV

with a single projection.

(a) Normal Scan

q Rotational Axis

Fan Beam : j

=T, U, ) X-ray Tube

Ph.ll(.‘i;‘

Dental
CBCT

Offset Scan & Truncated FOV

c Rotational Axis

FOV Truncation

X-ray Tube

Offset detector
Truncated FOV



Truncated & offset detector

source

Truncated

Truncated & offset



Why ill-posed?

As the demand to reduce the X-ray dose, the inverse problem

of dental CBCT becomes increasingly ill-posed.

# of equations

v" We wish to make

# of unknowns

as small as possible to reduce radiation dose .

u P

. i This length is proportional to the radiation
Forward matrix | ~ I ‘ dose ingCT. PP
Pl I A

There exist serious model
mismatch in the presence
of metallic implants.

Subsampled Data

This length is proportional to
| the image resolution.

CT image



Why ill-posed?

Motion artifacts are created by the
long scan time of dental CBCT.

* Motion artifacts are caused by patient movement.

. Dental CBCT Scan Time :

MDCT scan time: up to 0.25 sec 8.2 s (Normal) / 4.2 s (Fast)
) 1350mm(53.1")%47510mm 59
o s

- MDCT is not suitable for A \{\2

(’ private dental clinics due - : E:T'/

) to disadvantages such as 1 U - o
high equipment cost and ."\Q g';\
large space required for & §
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Why ill-posed?
Scattering Artifacts due to the short air gap

In dental CBCT, the object-to-detector distance (ODD) is
typically as short as possible in order to increase the FOV.
In addition, shorter ODDs allow for the use of smaller
detector areas (for cost saving).

Due to the short air gap (ODD),
the most serious cause of

artifacts is scattering. As the air

gap decreases, the likelihood
n=f(P)

for scattered x-ray radiation to
Standard reconstruction

reach the detector increases.




Cone beam artifacts :
Violation of Tuy’s data complete condition

Cone-beam artifacts are inherent to the circular scanning geometry that violates the
data sufficiency condition formulated by Tuy. According to Tuy's condition, accurate
reconstruction requires that every plain passing through any location in the region of
interest (ROI) must intersect the source trajectory at least once.
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Mathematical characterization of metal artifacts



Mathematical characterization of metal artifacts

Total X-ray Attenuation

:

* Linear Approximation w.r.t E

E(O) = pe, () + (E—Eo) 2| () +0(IE-Eol?)  § |
=Ey e
g' - lodine
9| _. =0 for most human tissues 3
aE 0 < 1 l large difference
v %lEzEO = a for metal region D =D, U---U Dy . g. Bone \ .
=energy
| small difference
o

« The mismatch [P — Rpug, | is approximated by E(ev)

[P — Rug, ] ~ —In (JH(E) exp{—a(E — EO)RXD}dE>

/;;{E) E0+h 1
o3 //\ ~ —In j —exp{—a(E — Eg)Rxp}dE
1 / - n(E) / Eo—h 2h
1h ,.f! \ _ sinh(ARyp)
/ \l IR

ark, J.K. Choi, J.K. Seo, Characterization of Metal Artifacts in X-ray Computed Tomography, CPAM (2017)

H.S. P
H. S. Park, D.S. Hwang, J.K. Seo, Metal Artifacts Reduction for Polychromatic X-ray based on the Analytical Artifact Correction, IEEE TMI (2016)



Mathematical Form of Beam-hardening Artifact

Metal-induced artifacts induced by metals occupying the region D =D, UD, U---U D,

can be expressed as the following mathematical formula:

1 . sinh (ZLM»;RXD]- )
¢D,).(x) = —4_R*I_ In Vi
i Z]:llj“RXD]

Ry,

&

« H.S. Park, J.K. Choi, J.K. Seo, Characterization of Metal Artifacts in X-ray Computed Tomography, CPAM (2017)
H. S. Park, D.S. Hwang, J.K. Seo, Metal Artifacts Reduction for Polychromatic X-ray based on the Analytical Artifact Correction, IEEE TMI (2016)



Visual explanation of metal-induced streaking artifacts using microlocal analysis

The metal streaking
artifacts are

produced only when
the wavefront set of
Ry p does not contain

the wavefront set of

(Rxp)*.

Hyoung Suk Park, Jae Kyu Choi,
JinKeun Seo, Characterization of
Metal Artifacts in X-ray Computed
Tomography, CPAM (2017)

D =D{UDyU Dy dim(Span[Z(ej’Sj)(:@XD)]) =2

R RR P! — P¥(x) =0

1
CbD,)\(X) = —E-@*Lﬁ_l lln (

sinh(AZxp)
AZX D )] )

(N
L 4

#~1 is the Riesz potential of degree -1



While the metal artifact corrector ¢ ; has proven successful for MAR in industrial CBCT, it is less

successful in dental CBCT due to additional factors such as metal-teeth interactions and FOV truncation.

Phantom Uncorrected Corrected $p.a




Why is MAR(metaI artifact reduction) difﬁCUIt in clinical CBCT?

The artifact structure is not only non-linearly influenced by the local metal geometry,

but is also entangled by complex factors related to metal-bone and metal-tooth

interactions, FOV truncation, offset detector acquisition, scattering, non-linear partial
volume effects, and others.
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Regularization Methods

The standard regularization approach may not be effective in mitigating metal
artifacts when metal implants occupy a significant portion of the imaged area.

p= argmin ||P — Ryll;2 + Reg (k)

Regularization is an effective method
for reducing noise in images. NOT for
this case.



1. Conventional CS-based Regularization Methods

regularization

p. = argmin ||P — Cpllp + AT (k)

The regularization T'(u) is expected to play a role in
suppressing artifacts in the reconstructed image.

I'(n) can be CS(compressed sensing) strategy, promoting
sparsity in a given basis.

CS-based regularizations cannot selectively preserve small
details about teeth, due to the uniform penalization by AT (u).
CS approaches tend to impair the morphological information of

the region around the metallic object in the reconstructed

image.



2. Inpainting-based sinogram correction

- Let D is metal region in the image space.
« The goal is to reconstitute the metal trace (T = Cyp) in the sonogram space.

- A sinogram correction P .., can be obtained by minimizing the following objective function:

LoSS(Peor): = ||(Por—P) O XTC||§2 + A ”VPCOPH{1

* (© is Hadamard's product
* xrc iIs is the binary mask of the sinogram area
.

excluding the metal trace Metal Region V inpainting

These sinogram correction methods have :
been somewhat successful, but these

methods can create new artifacts that were h\ ! , l i

not there before.
Phantom Ground Truth

4



3'1. Iterative ReconStrUCtion fOI‘ MAR (metal artifact reduction)

______
——————

1 - vr(u®) plays a key role to
. . k+_ Re ~ y (” p y y
« Artifact reduction: u( 2) = u® N 4 Vr(ﬂ(k)) /" extract artifacts and noise.

~~—-———---ll-——‘

1
- Data fidelity : p**Y = argmin||(P — Cp) O xr<||% + fllu - ﬂ(’”z)”
u

There are two questions:

(i) Which regularization is most appropriate? Hand-craft
regularization priors such as total variation seem to have limited
performance in handling artifacts that have nonlinear structure
depending on a variety of metal geometries.

(ii) Is it appropriate to use the same regularization in each
iteration? Since artifacts and noise characteristics are different for

each iteration step, it would be desirable to use a different artifact
corrector for each iteration step.




H. S. Park, J. K. Seo, C. M. Hyun, S. M. Lee, and K. Jeon, A fidelity-embedded
learning for metal artifact reduction in dental CBCT. Medical Physics,, 2022

3-2. Iterative reconstruction with data-driven regularization

---------- / Artifact extractor y VI'(u®) is replaced by £ (u®).
o plkrz) =y £ yvr(u®)

__________ 1
+ u® = argmin [|(P = €8) © xrell + 2111 - ulkra)

Learn ). p - 700 ysing paired data % = {( (o) ((k)) 1,---,L} by

f® =argmin 7yt |1f (1) - ¢ 12

fENN




3-3. How to get paired training data s = { (ug’ﬂ,zgk)) i=1,-,L}

Use a combination of artifact-
free real data and simulated
artifacts

From artifact-free image,
apply individual tooth
segmentation (YOLO, U-Net)
Metal implant shape
generation

Metal artifact generation
(using accurate Forward
model)

GAN-based synthetic-to-
realistic image refinement

--------------------------------------------- Fully-automated generation of metal shape and l&-(‘.\(iun}uwn--~-------—------»--N-“-»~--<-<-»-»--4
Normal patient CBCT ’

[Crown case]

Cut and Erosion g

[Implant case
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Beer Lambert Law
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Real patient

Simulated

images

images

Supervised DL methods appear to work very well. But, due to
difficulty in generating realistic paired data, these methods have

limited performance for clinical data.

Dental crown Dental implant Orthodontic bracket

* The simulated images look
very realistic, but in reality
they are different.
It is difficult to generate
realistic paired data.




4-1. Unsupervised Learning Approach: Least Square Generative Adversarial Network

. Use GAN along with the fidelity difference between the original CBCT (its probability distribution pcgcr ) and MDCT-like

images (pupcr) generated by the network. This approach is generally effective for denoising.

. But it can introduce additional artifacts because the weak input fidelity between the two imaging modalities can make it
*
difficult to preserve the morphological structures from complex shadowing artifacts.. \‘
*
‘-‘*IIIII....

G= argmm E; pescr [(D G(2)) ] + AE, ~pc3cr[HG(Z) —z|J]~

[
llllll [0

D= argmm | l(l D(p)) ]+)lE  ~pescr l(1+D G(2)) ]

z #ﬂ# Gz B

§ =z G(Z) (MDCT-like image)
»

Reject (0)

D iscrminator

Generator




4-2. To address the problem of the weak input fidelity between the two imaging

modalities, we adopt unpaired-paired learning.

in the first stage.

Paired training data, excluding inappropriate data, were collected from the results obtained

Subsequently, the fidelity-embedded GAN was retrained using the selected paired samples.

G= argénin E; peser [(D ° G(z))z] +2E; poperll1G(2) — 2]|]
D= arg;nin Ey puper [(1 - D(u))z] +AE; pger [(1 +Do G(z))z]

unpaired training

preprocessing

This method is very effective
in removing scattering noise.

However, this is not useful for
MAR.

HS PARK, KW JEON, SH LEE, JK SEO
(IEEE Access 2022)



Comments

« It is crucial to incorporate a strong image prior that constrains the
relationships between pixels based on underlying head anatomy.
«  While regularization techniques are commonly used for this purpose,

they have limited performance as they lack global controls between

pixels.



Neural Representation

Warning: Please note that this approach is currently at an early

stage of development, with most of the testing being performed

using phantom experiments rather than real-world experiments.



NeRF approach

l Beer-Lambert law “

Loss = Z ||data — predicted ||

detector

greyscale

Position
value

H
c Rotational Axis : "
| Neural

represen‘tgtion
of CBCT image
\




About the predicted data

Projection Data: Beer-Lambert law

Pcompute ((P, u, ‘U) = —lnfn(E) exp <—L ﬂE(x:y:Z)dS>dE

ouv

/

Iy \\\\\ N D-axis — G [”EO ) ] (w’ u, V)

™

: . OUE
o is determined by n(E) and —— E,




CT image representation

Pixel or voxel-based representation ]
Neural representation

= argmin||Au — P|| + Re
U a Igwmll u—P|| g(uw) F: x o u(x)

Position

# unknowns=# O

The dimension of the solution space
Is small. This neural provides a "fully
connected" solution, as each pixel is
connected to every other pixel in the

image.

# unknowns=# voxels (512 x 512 x 300)

The vast dimension of the solution space and the inconsistent data
necessitate the incorporation of an image prior that constrains the
relationship between pixels based on the underlying head
anatomy. Regularization techniques have limited performance due
to their inability to provide global controls.



Numerical experiments

CT reconstruction of high-attenuation objects in a standard CT imaging environment

P(¢,5) = —In j n(E) exp(—Rux (9, 5))d E

Filtered Back
projection

—P_

Sinogram

Beam-hardening effect

metallic object

RIP 360 view)




Reconstruction by FBP Reconstruction by NeRF
(360 view) (30 view)

metallic object

Beam-hardening effect




Reconstruction by NeRF Reconstruction by NeRF
(5 view) (120 view)




« Conventional CBCT reconstructions use a pixel or voxel-based approach
to represent image, but this approach in low-dose dental CBCT can face
challenges due to the large dimension of the solution space and
inconsistent data in the presence of metal implants.

* Neural representations using MLPs utilize implicit representations that
can capture complex relationships between image pixels more efficiently.

« These representations enable a significant reduction in the dimension of
the solution space, (HOPE) making CBCT reconstruction with highly

undersampled data more efficient.



Develop a MAR method for Dentomaxillofacial imaging

Giving up soft tissue details.

Main issue: 3D Teeth & Jaw Segmentation

OUtpUtZ MAR & segmentation

Input : z

Uncorrected 3D CBCT image
Target error : 0.2 mm



Without using a good image prior, it is difficult to get accurate segmentation

due to the difficulty in handling metal-induced artifacts.

(a)‘ Multiple gold dental prostheses (b) CBCT before MAR

Input: z

Uncorrected 3D CBCT image
Target error : 0.2 mm



The key idea: Get a good prior knowledge that is obtained by generating a

clean panoramic image from the noisy CBCT image.

The panoramic image is not much affected by metal-related artifacts.
\ N
\

2D shape of

Mapping from CBCT
apping from tooth can be

to panoramic image

seen.

CBCT image | '

Dental arch
generation

Panoramic image

This image was obtained by
integrating along the normal
direction of the dental arch.
This integration cancels out metal
artifacts.

Metal-artifact
contaminated image

50



Accurate 2D tooth segmentation is obtained from panoramic
images.

This 2D segmentation is used to find accurate 3D tooth ROls.

YOLO

YOLO

51



2D tooth segmentation provides a deep learning friendly environment
for 3D tooth segmentation.

Cll

pper—ia'v:f -
I r A

Extraction of loose & tight ROIs i !,‘naﬁgﬂ‘g

SRR AAN IR P

Pupper—jaw (s,2%)

t

Extract ROls by
3D bounding box

Project back
into CT image

é ﬁ If’ Iupper—jaw(x’ y,Z*)
Cupper—jaw = {r(s) = (x(s),y(s)) : SE 1,---,640}
1

|oose RO tight ROI p (s, 2) =J I _aw (0(S) + tn(s), z) dt

(ROI joose) (RO tignt) ApperTiaw _p ppera
o _ . - . - .
| Dpox = {(r(s) + tn(s),2) : = < t < 1,(5,2) € Bpoy) : Dgeg = {(r(s) +tn(s),z): =l<t<L(sz)€ Bseg} A point (s, z) in P corresponds to a point (x(s),y(s),z) in I
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| |
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| L4

3D U-Net
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Summery: The panoramic images generated by CBCT data can be

excellent prior information for 3D tooth segmentation.

—{Image Priorl— CBCT Data u

Panoramic image

3D Individual
Tooth Segmentation

P> | 3D U-shape FCN | m——) Q“y

—

Reference Curve

'/)Ilpl)(‘l'-_]ﬂ\\' Projection

Test Subject
3D ROI Extraction .

YOLO &

- (Tooth detection)
2D U-shape FCN

(Tooth segmentation)

& lower-jaw

Tae Jun Jang, Kang Cheol Kim, Hyun
Cheol Cho, and Jin Keun Seo,, |EEE
Transactions on Pattern Analysis and
Machine Intelligence (2021)



Although the aforementioned method using the panoramic image prior has
achieved great success in accurate tooth segmentation, there is still a limit to

accurately reconstructing teeth surfaces.

Concrete image prior: Intra-Oral Scan (10S)

The 10S as a concrete image prior can be used without increasing X-ray dose exposure.

(a) Subject (b) CBCT (c) Panoramic image (d) Intra-oral scan



Fusion Of CBCT and intraoral scan can eliminate

the cumbersome procedure of conventional impressions.

Overallworkflow of the proposed fully autor

i= Cﬂf E g .4

BTl Mo

Segmentation
& Identlﬁca‘mon

Jl

Registration

FPFH
CBCT
& ICP

iﬂ

Segmentation

& | Identification }

> £

Stitching
error sl
correction

Jang T J, Yun H S and Seo J K 2022 Fully
automatic integration of dental CBCT
images and full-arch intraoral impressions
with stitching error correction via
individual tooth segmentation and
identification arXiv:2112.01784

Skull segmentation




Using PCA, we align X in a new coordinate
system with three axes (uq, up, uz).

X; —X SVD

%= = UVT = V =[pcy,pcy pesl

. X—X >
u, = {pcz if <pc2' ZXEX ”X_)_(ll) = 0’

—pc, otherwise

_ {p63 if (pC3, Yxex Nx) = 0
Uz = X ,
—pc; otherwise

u; = u, X us.

Step 1. Depth image generation

Orthographic
Projection

I () = {ma" {(mrs). 0} Flunnx 20 g0 = -

Rendered image I, Depth image I,

*
(np’{w' u3> ~ Zmin

, . : if,, NOx + 0
0 otherwise Zmax ~ Zmin
0 otherwise
€y - a line passing through (u,v) with the direction u; n, : a unit normal at p
p;,v = argmax{(p, U3): p € fu,v N -QX} Zr*nax = max{(p;,v: ll3>} Z:nin = min{(pﬁ,w u3)}

The rendered image contains clear geometric features by lighting and shading the surface

The depth image provides the tooth reliability by expressing the relative distance because the
tooth positions protrudes forward than the gingiva and other tissues.



Step 2: tooth bounding box detection & 3D ROI extraction
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Step 3: Individual tooth segmentation and identification from the ROIs

DGCNN

g L=
' (00—

v

DGCNN

(00p=-
y JUO>=(

Segmentation & classification Tooth identification

Tooth identification

Listing teeth
in order from left

‘ > f

Concave hull

— «——
using ball-pivoting algorithm MMEF c EREN c 2P MM B 30 358 53 32 8l 42 13 [ 15 10 [

Numbering sequentially \
from the incisors




Step 4. Global-to-local registration of I0S and CBCT

Two stage registration: 1) FPFH (Fast point feature histogram) for global initial alignment
2) ICP(lterative Closest Point) for local refinement.

(x,y) € Corr®

FPFH(x) FPF H_(;Sﬁ

m—source

Rigid transformation

t
T7E) o ..
f

T*

CBCT

.o 7(0)

v

Global initialization

FPFH(x) represents the geometric features at x, and the relevant
information considering its neighboring points.

matchfPFH (x) := argmin||[FPFH(x) — FPFH(y)||

Yteeth
ee V€Y teeth

Yiteeth

Corr = {(x, matchfPFH (x)) ‘X € X} N {(match{?F (y),y):y € Y}

We sample randomly three pairs (x1,y1), (x2,¥2), (x3,¥3), and select the
m if the following condition is met:

e =%l 1
v =yl 7
We denote this filtered subset as Corr©.

T< fori<1<j<3.

ly — 7|
(x,y)ecCorr(0)

7© = argmin
TESE(3)

Local refinement

T-ICP finds correspondences in
two teeth with the same code.

It prevents undesired point
matching between different
teeth.

Matchy, . (X) == argmin||x — y/|
V€Y teeth

J

Corr® = U {(x, matchytj x):x € Xt(j’_(_l)}
j=1

ly — T
(x,y)ecorr )

7®) = argmin
TESE(3)



Step 5: Stitching Error Correction in 10S

X; 7 (X2

Ty =ICP(X;, 4 UX;, UX; 11,Ye,-1UY UY, 1)

»

*
Xg1

Stitching
error { ICP(Iterative Closest Point)

T3 = ICP (X; 1 UX} UK} 11, ¥yoq UY, UY 1)

»
»

Registration

T;* = ICP (X;]_l U X;l U X:]+1: Yt]_1 U Yt] U Yt]+1)

»
»

* By referring to the CBCT teeth, we edit the IOS models with the stitching errors.
» \We use one tooth and two adjacent teeth on both sides for reliable correction.

» It takes advantage of the fact that narrow digital scanning is accurate.
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Skull segmentation




CH Hyun, T Bayaraa, HS Toon, TJ Jang, HA Park, JK Seo 2022 Phys. Med. Biol. 67 175007

Deep Learning-based 3D bone-teeth-jaw modeling
using CBCT & Intra Oral Scanner

3D bone-teeth-jaw model 3D bone-teeth-jaw model
generated from uncorrected obtained from the DL method
CBCT image without using that leverages the tooth surface

10S. information from IOS.



Thank you.

The aforementioned segmentation can be the core basis

of Digital Dentistry. Jin Keun Seo Editor

Deep Learning
and Medical
Applications

@ Springer
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