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Commercial dental CBCTs

• Commercial dental CBCT systems typically utilize a small flat panel detector, which generates a 

polychromatic and truncated sinogram. Although some manufacturers may advertise the use of 

photon counting detectors, these features are not widely adopted in dental CBCT practice.

• I try to provide clear explanations of the complex issues involved in commercial dental CBCT imaging, 

specifically addressing shortcomings in existing methods.



Structural difference between Conventional CT & dental CBCT

MDCT Dental CBCT

• Circular cone-beam

• Scan time: 8-24sec

• Price < $ 0.05 million

• Cheap maintenance

• Helical fan-beam

• Scan time per revolution< 0.5s

• Price > $ 1 million

• Expensive maintenance

The difference is related to the rotation speed of the 
CT gantry, where stability must be ensured during 
continuous rotation at high centripetal forces. 

Most dental CBCT equipment allows the patient to 

scan while sitting or standing, requiring less space in 

the dental office. Due to the centripetal force, the 

scanner gantry cannot be rotated quickly.



Inverse Problem in low-dose dental CBCT
The goal is to find a good CT-reconstruction function:

𝒇 ∶ 𝑷 → 𝝁
Projection data CT image

Reconstruction 
function Transform Matrix

≈
𝑷𝝁

CT image

Forward model

≈ 𝒇−1



𝑷 𝝋,𝒖, 𝒗 = − 𝐥𝐧න𝜼 𝑬 𝐞𝐱𝐩 −න
ℓ𝝋,𝒖,𝒗

𝝁𝑬 𝒙, 𝒚, 𝒛 𝒅𝒔 𝒅𝑬

Projection Data:  Beer-Lambert law

Inverse Problem: 

Reconstruct the CT image 𝝁 =

𝜇𝐸0 (i.e., the tissue density at a 

fixed energy 𝐸0 ) from measured 

projection data 𝑷.

The mathematical model of dental CBCT

The energy distribution 𝜼 𝑬 can include photons 
with energies ranging from 0 keV up to 120 keV. 



𝝁 𝒙, 𝑧 =

FDK (Feldkamp-Davis-Kress) algorithm  is a modified version of the 

inverse Radon transform that is specifically designed for CBCT imaging.



Why is the inverse problem of dental CBCT 

ill-posed & Nonlinear?

Dental CBCT is a powerful imaging modality that can provide high-quality, three-

dimensional images of the teeth, jawbones, and surrounding tissues. However, the 

presence of metal implants can cause significant image artifacts and reduce the 

overall image quality. 



The actual CT model is polychromatic (NOT monochromatic):

𝑷 𝜑, 𝑢, 𝑣 = −𝑙𝑛 ∫ 𝜼 𝑬 exp −𝓒𝝁𝑬 𝜑, 𝑢, 𝑣 𝑑𝐸 with  𝜼 𝑬 ≠ 𝜹 𝑬 − 𝑬𝟎 .

𝑷=−𝑙𝑛 ∫ 𝜼 𝑬 exp −𝑷𝑬 𝑑𝐸

• .

The X-ray tube emits 
polychromatic spectrum 

of photons.
𝝁𝑬 varies with 𝑬.



Metal-induced Artifacts

• The accuracy of the linear forward model is compromised due to the idealized 

monochromatic assumption ( 𝜼 𝑬 = 𝜹 𝑬 − 𝑬𝟎 ) .

• The presence of metal implants in CT scans leads to severe discrepancies in the 

monochromatic assumption of the X-ray data, resulting in metal artifacts. 

Why ill-posed?



Radon Transform

Radon Model

To simplify our explanation, we will limit our discussion to the 2D parallel-

beam model with an idealized monochromatic assumption.

𝑷 𝜑, 𝑢, 𝑣 = −𝑙𝑛 ∫ 𝜼 𝑬 exp(−𝓒𝝁𝑬 𝜑, 𝑢, 𝑣 )𝑑𝐸

𝑷(𝝋, 𝒔) = 𝓡𝝁(𝝋, 𝒔) = න
𝑹𝟐
𝝁 𝒙 𝜹 𝒙 ⋅ 𝚯𝝋 − 𝒔 𝒅𝒙



Monochromatic 
Radon Model

𝑷(𝝋, 𝒔) = 𝓡𝝁(𝝋, 𝒔) = න
𝑹𝟐
𝝁 𝒙 𝜹 𝒙 ⋅ 𝚯𝝋 − 𝒔 𝒅𝒙

𝑷(𝝋, 𝒔) = − 𝐥𝐧න𝜼 𝑬 𝐞𝐱𝐩 −𝓡𝝁𝑬(𝝋, 𝒔) 𝒅𝑬
Polychromatic 
Actual Model

Although commercial CT scanners are polychromatic, research in the 
field of CT imaging largely relies on the simplifying assumption of a 

monochromatic Radon model.



𝑷 = − 𝐥𝐧න𝜼 𝑬 𝐞𝐱𝐩 −𝓡𝝁𝑬 𝒅𝑬 ∉ 𝑹𝒂𝒏𝒈𝒆 𝒐𝒇 𝓡

This model discrepancy can cause the acquired data 𝑷 to fall outside the range of the Radon transform, 

indicating a discrepancy between the assumed model and the actual acquired data.

𝑷 −𝓡(𝓡−𝟏 𝑷) ≠ 𝟎



Toy model:  bi-chromatic X-rays (64 and 80 KeV)

Metal object : 𝝁𝟔𝟒𝑲𝒆𝑽 = 𝟔𝟒, 𝝁𝟖𝟎𝑲𝒆𝑽= 𝟓

𝑷𝟏 = −𝒍𝒐𝒈
𝟏

𝟐
𝒆−𝟔𝟒×𝟐 +

𝟏

𝟐
𝒆−𝟓×𝟐

𝑷𝟑 = −𝒍𝒐𝒈
𝟏

𝟐
𝒆−𝟔𝟒 +

𝟏

𝟐
𝒆−𝟓

CT reconstruction problem based on Radon 
transform: Find 𝝁 ∈ 𝑅+

4 solving

1 1
0 0

0 0
1 1

1 0
0 1

1 0
0 1

𝜇1
𝜇2
𝜇3
𝜇4

=

𝑃1
𝑃2 = 0
𝑃3
𝑃3

Answer: There exist no solution. Why? 
From 2nd low, 𝜇3 = 𝜇4 = 0. From 3rd and 4th rows,  𝜇1 = 𝜇2.

From 1st row,  𝜇1 must satisfy

𝟐𝝁𝟏 = 𝝁𝟏 + 𝝁𝟐 = −𝒍𝒐𝒈
𝟏

𝟐
𝒆−𝟔𝟒×𝟐 +

𝟏

𝟐
𝒆−𝟓×𝟐

and  𝝁𝟏 = −𝒍𝒐𝒈
𝟏

𝟐
𝒆−𝟔𝟒 +

𝟏

𝟐
𝒆−𝟓

This is not possible because 

𝟏

𝟐
𝒆−𝟔𝟒 +

𝟏

𝟐
𝒆−𝟓 ≠

𝟏

𝟐
𝒆−𝟔𝟒×𝟐 +

𝟏

𝟐
𝒆−𝟓×𝟐

𝑷𝟐 = 𝟎

Metal 𝜇1

Air 𝜇4

Metal 𝜇2

Air 𝜇3



1 1
0 0

0 0
1 1

1 0
0 1

1 0
0 1

𝜇1
𝜇2
𝜇3
𝜇4

=

𝑃1 = 12.5
𝑃2 = 0
𝑃3 = 7.5
𝑃3 = 7.5

𝐀 𝛍 = 𝐏

What is 𝝁 = 𝒂𝒓𝒈𝒎𝒊𝒏
𝛍

||𝐀𝛍 − 𝐏|| ?

𝛍 = 𝐀𝐀∗ −𝟏𝐀∗𝐏

Reconstruction: 𝐀𝐀∗ −𝟏𝐀∗𝐏 ∗ =

10.2
2.9
−3.4
4.0

≠

𝒂
𝒂
𝟎
𝟎

Steaking artifacts

𝑃1

𝑃2 = 0

𝑃3 𝑃4 = 𝑃3



Consider the problem  

1 1
0 0

0 0
1 1

1 0
0 1

1 0
0 1

𝜇1
𝜇2
𝜇3
𝜇4

=

𝑃1
𝑃2 = 0
𝑃3
𝑃3

with 𝑃1=3 and  𝑃3=2

1 1
0 0

0 0
1 1

1 0
0 1

1 0
0 1

𝜇1
𝜇2
𝜇3
𝜇4

=

3
0
2
2

1 1
0 0

0 0
1 1

1 0
0 1

1 0
0 1

𝜇1
𝜇2
𝜇3
𝜇4

=

3 + 𝟏
0
2
2

1 1
0 0

0 0
1 1

1 0
0 1

1 0
0 1

𝜇1
𝜇2
𝜇3
𝜇4

=

3 + 𝑐
−𝑐
2 − 𝑐
2 + 𝑐

𝛍 = 𝐀𝐀∗ −𝟏𝐀∗𝐏

Project to the 
range space

Not in the range 
space of Radon 
transform

Question: How can we attain effective correction that significantly differs from the standard method?

Source of 
streaking 
artifacts

In metal artifact reduction in CT, correcting in sinogram space 
is challenging, therefore iterative approaches that incorporate 
both image space and sonogram space correction with 
regularization are commonly employed.



The mismatch 𝑷 −𝓡(𝓡−𝟏 𝑷) ≠ 𝟎 produces metal artifacts.

• Based on the inherent nature of 𝓡−𝟏,  𝓡(𝓡−𝟏 𝑷) is the closest sinogram in the range space of 𝓡 from 𝑷.

• According to Hilbert’s projection theorem, the discrepancy 𝑷 −𝓡(𝓡−𝟏 𝑷) is orthogonal to 𝑹𝒂𝒏𝒈𝒆 𝒐𝒇 𝓡.

• This discrepancy is mapped to streaking artifacts.

𝑷 −𝓡(𝓡−𝟏 𝑷)



𝚼 𝐱 = ඵ𝚪𝝋,𝒔 𝐱 𝑷mismatch 𝜑, 𝑠 𝑑𝑠𝑑𝜑

Artifact Expression due to the signogram inconsistency is:

𝚪𝝋,𝒔 = 𝒂𝒓𝒈min
𝜇

|| 𝜹𝝋,𝒔 − 𝑹𝝁 ||

𝓡(𝓡−𝟏𝑷mismatch) = 𝓡(𝓡−𝟏𝑷) − 𝑹𝝁∗

Handling metal-induced artifacts in dental CBCT is challenging due to complex 

factors related to metal-bone and metal-tooth interactions, FOV truncation, offset 

detector acquisition, scattering, non-linear partial volume effects, and others.



Dental CBCT geometry 
• The radiation beam of CBCT  is cone-shaped, while that of conventional CT is fan-shaped.

• Typical dental CBCTs use offset detector to acquire only half  of the extended FOV 

with a single projection.

• Offset detector

• Truncated FOV 

Dental 
CBCT



Truncated & offset detector

FOV

𝒙, 𝒚𝟎

Truncated & offset  

Truncated



✓ We wish to make 
# 𝐨𝐟 𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧𝐬

# 𝐨𝐟 𝐮𝐧𝐤𝐧𝐨𝐰𝐧𝐬
as small as possible to reduce radiation dose .

Forward matrix ≈
Subsampled Data

𝑷𝝁

CT image

This length is proportional to the radiation 
dose in CT.

This length is proportional to 
the image resolution.

There exist serious model 
mismatch in the presence 
of metallic implants.

As the demand to reduce the X-ray dose, the inverse problem

of dental CBCT becomes increasingly ill-posed.

Why ill-posed?



Motion artifacts are created by the 
long scan time of dental CBCT.

Why ill-posed? 
Motion Artifacts

• Motion artifacts are caused by patient movement.

Image Credit: MedWoW

MDCT scan time: up to 0.25 sec

• Dental CBCT Scan Time : 

8.2 s (Normal) / 4.2 s (Fast)

MDCT  is not suitable for  
private dental clinics due 
to disadvantages such as 
high equipment cost and 
large space required for 
use.



Scattering Artifacts due to the short air gap

Why ill-posed?

In dental CBCT, the object-to-detector distance (ODD) is 
typically as short as possible in order to increase the FOV.  
In addition, shorter ODDs allow for the use of smaller 
detector areas (for cost saving). 

Due to the short air gap (ODD), 

the most serious cause of 

artifacts is scattering. As the air 

gap decreases, the likelihood 

for scattered x-ray radiation to 

reach the detector increases. 

air gap 

𝝁 = 𝒇(𝑷)

Standard reconstruction



Cone beam artifacts : 
Violation of Tuy’s data complete condition

Cone-beam artifacts are inherent to the circular scanning geometry that violates the 
data sufficiency condition formulated by Tuy. According to Tuy’s condition, accurate 
reconstruction requires that every plain passing through any location in the region of 
interest (ROI) must intersect the source trajectory at least once.

Simulated CBCT Clinical CBCT 



Mathematical characterization of  metal artifacts



• Linear Approximation w.r.t  𝑬

𝝁𝑬 𝒙 = 𝝁𝑬𝟎 𝒙 + 𝑬 − 𝑬𝟎
𝝏𝝁𝑬
𝝏𝑬

ቚ
𝑬=𝑬𝟎

𝒙 + 𝑶 𝑬 − 𝑬𝟎
𝟐

✓
𝝏𝝁𝑬

𝝏𝑬
|𝑬=𝑬𝟎 = 𝟎 for most human tissues 

✓
𝝏𝝁𝑬

𝝏𝑬
|𝑬=𝑬𝟎 = 𝜶 for metal region 𝑫 = 𝑫𝟏 ∪⋯∪ 𝑫𝑱 . 

• The mismatch [𝑷 − 𝓡𝝁𝑬𝟎 ] is approximated by  

𝑷 −𝓡𝝁𝑬𝟎 ≈ − ln න𝜂 𝐸 exp −𝛼 𝐸 − 𝐸0 ℛ𝜒𝐷 𝑑𝐸

≈ − ln න
𝐸0−ℎ

𝐸0+ℎ 1

2ℎ
exp −𝛼 𝐸 − 𝐸0 ℛ𝜒𝐷 𝑑𝐸

= − 𝐥𝐧
𝐬𝐢𝐧𝐡(𝝀𝓡𝝌𝑫)

𝝀𝓡𝝌𝑫

E=energy

•
𝝁
=

A
b
so

rp
ti
o
n

Bone

Iodine

Water

• H. S. Park, J.K. Choi, J.K. Seo, Characterization of Metal Artifacts in X-ray Computed Tomography, CPAM (2017)
• H. S. Park, D.S. Hwang, J.K. Seo, Metal Artifacts Reduction for Polychromatic X-ray based on the Analytical Artifact Correction, IEEE TMI (2016)

Mathematical characterization of  metal artifacts



𝝓𝑫,𝝀 𝒙 = −
𝟏

𝟒𝝅
𝓡∗𝑰−𝟏 𝐥𝐧

𝐬𝐢𝐧𝐡 σ𝑱=𝟏
𝑱

𝝀𝒋𝓡𝝌𝑫𝒋

σ
𝑱=𝟏
𝑱

𝝀𝒋𝓡𝝌𝑫𝒋
𝒙

ℛ−1 𝑃‡ ℛ𝝁𝐸0

Metal-induced artifacts induced by metals occupying the region 𝐃 = 𝑫𝟏 ∪ 𝑫𝟐 ∪⋯∪ 𝑫𝑱

can be expressed as the following mathematical formula:

• H. S. Park, J.K. Choi, J.K. Seo, Characterization of Metal Artifacts in X-ray Computed Tomography, CPAM (2017)
• H. S. Park, D.S. Hwang, J.K. Seo, Metal Artifacts Reduction for Polychromatic X-ray based on the Analytical Artifact Correction, IEEE TMI (2016)

Mathematical Form of Beam-hardening Artifact 



Visual explanation of metal-induced streaking artifacts using microlocal analysis

The metal streaking 

artifacts are

produced only when 

the wavefront set of 

𝓡𝝌𝑫 does not contain 

the wavefront set of 

𝓡𝝌𝑫
𝟐.

Hyoung Suk Park, Jae Kyu Choi, 
JinKeun Seo, Characterization of 
Metal Artifacts in X-ray Computed
Tomography, CPAM (2017) 



While the metal artifact corrector 𝝓𝑫,𝝀 has proven  successful for MAR in industrial CBCT, it is less 

successful in dental CBCT due to additional factors such as metal-teeth interactions and FOV truncation.

Phantom            Uncorrected               Corrected                       𝝓𝑫,𝝀



The artifact structure is not only non-linearly influenced by the local metal geometry, 

but is also entangled by complex factors related to metal-bone and metal-tooth 

interactions, FOV truncation, offset detector acquisition, scattering, non-linear partial 

volume effects, and others.

Why is MAR(metal artifact reduction) difficult in clinical CBCT?



Regularization Methods

𝝁 = 𝐚𝐫𝐠𝐦𝐢𝐧
𝝁

||𝑷 − 𝑹𝝁||
ℓ𝟐
𝟐 + 𝑹𝒆𝒈(𝝁)

The standard regularization approach may not be effective in mitigating metal 
artifacts when metal implants occupy a significant portion of the imaged area.

Regularization is an effective method 
for reducing noise in images.  NOT for 
this case.



1.  Conventional CS-based Regularization Methods

𝝁∗ = 𝐚𝐫𝐠𝐦𝐢𝐧
𝝁

||𝑷 − 𝓒𝝁||
ℓ𝟐
𝟐 + 𝝀 𝚪(𝝁)

• The regularization  𝚪(𝝁)  is expected to play a role in 

suppressing artifacts in the reconstructed image.

• 𝚪(𝝁) can be CS(compressed sensing) strategy, promoting 

sparsity in a given basis. 

• CS-based regularizations cannot selectively preserve small 

details about teeth, due to the uniform penalization by 𝝀 𝚪(𝝁). 

• CS approaches tend to impair the morphological information of 

the region around the metallic object in the reconstructed 

image. 

regularization



• Let 𝑫 is metal region in the image space. 

• The goal is to reconstitute the metal trace (𝑻 = 𝓒𝝌𝑫) in the sonogram space.

• A sinogram correction 𝑷𝒄𝒐𝒓 can be obtained by minimizing the following objective function:

2. Inpainting-based sinogram correction

𝓛𝒐𝒔𝒔 𝐏𝐜𝐨𝐫 : = ||(𝑷𝒄𝒐𝒓−𝑷)⊙ 𝜒𝑇𝑐||ℓ𝟐
𝟐 + 𝝀 ||𝛁𝐏𝐜𝐨𝐫||ℓ𝟏

• ⊙ is Hadamard’s product
• 𝜒𝑇𝑐 is is the binary mask of the sinogram area 

excluding the metal trace

These sinogram correction methods have 

been somewhat successful, but these 

methods can create new artifacts that were 

not there before. 

Metal Region TV inpainting

Phantom Ground Truth



3-1. Iterative Reconstruction for MAR (metal artifact reduction) 

There are two questions: 

(i) Which regularization is most appropriate? Hand-craft 
regularization priors such as total variation seem to have limited 
performance in handling artifacts that have nonlinear structure 
depending on a variety of metal geometries.

(ii) Is it appropriate to use the same regularization in each 
iteration? Since artifacts and noise characteristics are different for 
each iteration step, it would be desirable to use a different artifact 
corrector for each iteration step. 

• Artifact reduction: 𝝁
𝒌+

𝟏

𝟐 = 𝝁 𝒌 − 𝜸 𝛁𝚪 𝝁 𝒌

• Data fidelity :  𝝁 𝒌+𝟏 = 𝐚𝐫𝐠𝐦𝐢𝐧
𝝁

||(𝑷 − 𝓒𝝁)⊙ 𝜒𝑇𝑐||ℓ𝟐
𝟐 +

𝝀

𝜸
||𝝁 − 𝝁

𝒌+
𝟏

𝟐 ||

Siemens

iMARw/o MAR

𝜸 𝛁𝚪 𝝁 𝒌 plays a key role to 

extract artifacts and noise. 



3-2. Iterative reconstruction with data-driven regularization  

• 𝝁
𝒌+

𝟏

𝟐 = 𝝁 𝒌 − 𝜸 𝛁𝚪 𝝁 𝒌

• 𝝁 𝒌+𝟏 = 𝐚𝐫𝐠𝐦𝐢𝐧
𝝁

||(𝑷 − 𝓒𝝁)⊙ 𝜒𝑇𝑐||ℓ𝟐
𝟐 +

𝝀

𝜸
||𝝁 − 𝝁

𝒌+
𝟏

𝟐 ||

Learn  𝒇 𝒌 : 𝝁 𝒌 → 𝜻 𝒌 using paired data 𝓢 𝒌 = { 𝝁𝒊
𝒌
, 𝜻𝒊

𝒌
: 𝒊 = 𝟏,⋯ , 𝑳} by  

𝒇 𝒌 =𝐚𝐫𝐠𝐦𝐢𝐧
𝒇∈𝑵𝑵

𝟏

𝑳
σ𝒊=𝟏
𝑳 ||𝒇 𝝁𝒊

𝒌
− 𝜻𝒊

𝒌
||𝟐

𝝁 𝟏

H. S. Park, J. K. Seo, C. M. Hyun, S. M. Lee, and K. Jeon, A fidelity-embedded 
learning for metal artifact reduction in dental CBCT. Medical Physics,, 2022

Artifact extractor  𝜸 𝛁𝚪 𝝁 𝒌 is replaced by 𝒇 𝒌 ( 𝝁 𝒌 ).

𝝁
𝟏

𝟐 = 𝝁 𝟎 − 𝒇 𝟎 (𝝁 𝟎 )𝝁 𝟎



3-3. How to get paired training data 𝓢 𝒌 = { 𝝁𝒊
𝒌
, 𝜻𝒊

𝒌
: 𝒊 = 𝟏,⋯ , 𝑳}

1. From artifact-free image, 
apply individual tooth 
segmentation (YOLO, U-Net)

2. Metal implant shape 
generation

3. Metal artifact generation 
(using accurate Forward 
model)

4. GAN-based synthetic-to-
realistic image refinement

Use a combination of artifact-
free real data and simulated 

artifacts 



• The simulated images look 
very realistic, but in reality 

they are different. 
• It is difficult to generate 

realistic paired data. 

Supervised DL methods appear to work very well. But, due to 

difficulty in generating realistic paired data, these methods have 

limited performance for clinical data.



4-1. Unsupervised Learning Approach: Least Square Generative Adversarial Network

• Use GAN along with the fidelity difference between the original CBCT (its probability distribution 𝒑𝑪𝑩𝑪𝑻 ) and MDCT-like 

images (𝒑𝑴𝑫𝑪𝑻) generated by the network.  This approach is generally effective for denoising. 

• But it can introduce additional artifacts because the weak input fidelity between the two imaging modalities can make it 

difficult to preserve the morphological structures from complex shadowing artifacts.. 

𝐆 = 𝒂𝒓𝒈𝒎𝒊𝒏
𝐆

𝑬𝒛 ~𝒑𝑪𝑩𝑪𝑻 𝑫 ∘ 𝑮 𝒛
𝟐
+ 𝝀𝑬𝒛 ~𝒑𝑪𝑩𝑪𝑻 ||𝑮 𝒛 − 𝒛||

𝐃 = 𝒂𝒓𝒈𝒎𝒊𝒏
𝑫

𝑬𝝁 ~𝒑𝑴𝑫𝑪𝑻
𝟏 − 𝐃 𝝁

𝟐
+ 𝝀𝑬𝒛 ~𝒑𝑪𝑩𝑪𝑻 𝟏 + 𝑫 ∘ 𝑮 𝒛

𝟐

𝒛 ~𝒑𝑪𝑩𝑪𝑻 (CBCT image) 𝑮 𝒛 (MDCT-like  image)

Generator



4-2. To address the problem of the weak input fidelity between the two imaging 

modalities, we adopt unpaired-paired learning.

• Paired training data, excluding inappropriate data, were collected from the results obtained 

in the first stage.

• Subsequently, the fidelity-embedded GAN was retrained using the selected paired samples.

• This method is very effective 

in removing scattering noise.

• However, this is not useful for 

MAR.

𝐆 = 𝒂𝒓𝒈𝒎𝒊𝒏
𝐆

𝑬𝒛 ~𝒑𝑪𝑩𝑪𝑻 𝑫 ∘ 𝑮 𝒛
𝟐
+ 𝝀𝑬𝒛 ~𝒑𝑪𝑩𝑪𝑻 ||𝑮 𝒛 − 𝒛||

𝐃 = 𝒂𝒓𝒈𝒎𝒊𝒏
𝑫

𝑬𝝁 ~𝒑𝑴𝑫𝑪𝑻
𝟏 − 𝐃 𝝁

𝟐
+ 𝝀𝑬𝒛 ~𝒑𝑪𝑩𝑪𝑻 𝟏 + 𝑫 ∘ 𝑮 𝒛

𝟐

HS PARK, KW JEON, SH LEE, JK SEO 
(IEEE Access 2022)



Comments

• It is crucial to incorporate a strong image prior that constrains the 

relationships between pixels based on underlying head anatomy.

• While regularization techniques are commonly used for this purpose, 

they have limited performance as they lack global controls between 

pixels. 



Neural Representation 

Warning: Please note that this approach is currently at an early 

stage of development, with most of the testing being performed 

using phantom experiments rather than real-world experiments.



𝐹ΘPosition greyscale 
value

Neural 
representation 
of CBCT image

𝑳𝒐𝒔𝒔 = ෍

𝒅𝒆𝒕𝒆𝒄𝒕𝒐𝒓

||𝒅𝒂𝒕𝒂 − 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 ||

Beer-Lambert law
NeRF approach



𝑷𝒄𝒐𝒎𝒑𝒖𝒕𝒆 𝝋,𝒖, 𝒗 =

Projection Data:  Beer-Lambert law

About the predicted data

− 𝐥𝐧න𝜼 𝑬 𝐞𝐱𝐩 −න
ℓ𝝋,𝒖,𝒗

𝝁𝑬 𝒙, 𝒚, 𝒛 𝒅𝒔 𝒅𝑬

= 𝑮[𝝁𝑬𝟎 , 𝝈] 𝝋, 𝒖, 𝒗

𝝈 is determined by 𝜼 𝑬 and 
𝝏𝝁𝑬

𝝏𝑬
|𝑬𝟎



CT image representation

Pixel or voxel-based representation

𝝁 = 𝒂𝒓𝒈𝒎𝒊𝒏
𝛍∈𝑹#𝒗𝒐𝒙𝒆𝒍𝒔

||𝐀𝛍 − 𝐏|| + 𝐑𝐞𝐠(𝝁)

𝐹ΘPosition

greyscale 
value

Neural representation

𝑭: 𝒙 ↦ 𝝁 𝒙

# unknowns=# 𝚯
The dimension of the solution space 

is small. This neural provides a "fully 
connected" solution, as each pixel is 
connected to every other pixel in the 

image. 

# unknowns=# voxels (𝟓𝟏𝟐 × 𝟓𝟏𝟐 × 𝟑𝟎𝟎)
The vast dimension of the solution space and the inconsistent data 
necessitate the incorporation of an image prior that constrains the 

relationship between pixels based on the underlying head 
anatomy. Regularization techniques have limited performance due 

to their inability to provide global controls.



Filtered Back 
projection

True CT image 𝝁𝑬 𝓡−𝟏𝑷 (360 view)

𝑷(𝝋, 𝒔) = − 𝐥𝐧න𝜼 𝑬 𝐞𝐱𝐩 −𝓡𝝁𝑬(𝝋, 𝒔) 𝒅𝑬

𝑷

Sinogram

CT reconstruction of high-attenuation objects in a standard CT imaging environment

metallic object
Beam-hardening effect

Numerical  experiments



Reconstruction by FBP  

(360 view)

Reconstruction by NeRF

(30 view)

metallic object

Beam-hardening effect



Reconstruction by NeRF

(5 view)
Reconstruction by NeRF

(120 view)



• Conventional CBCT reconstructions use a pixel or voxel-based approach 

to represent image, but this approach in low-dose dental CBCT can face 

challenges due to the large dimension of the solution space and 

inconsistent data in the presence of metal implants. 

• Neural representations using MLPs utilize implicit representations that 

can capture complex relationships between image pixels more efficiently. 

• These representations enable a significant reduction in the dimension of 

the solution space, (HOPE) making CBCT reconstruction with highly 

undersampled data more efficient.



Main issue: 3D Teeth & Jaw Segmentation

𝒇( ) =

Input :  𝒛 Output: MAR & segmentation 

Target error : 0.2 mm

Uncorrected 3D CBCT image

Develop a MAR method for Dentomaxillofacial imaging

Giving up soft tissue details.



(a) Multiple gold dental prostheses (b) CBCT before MAR (c) CBCT after MAR (d) Bone thresholding segmentation

Without using a good image prior, it is difficult to get accurate segmentation 

due to the difficulty in handling metal-induced artifacts. 



The key idea: Get a good prior knowledge that is obtained by generating  a 

clean panoramic image from the noisy CBCT image.

50

The panoramic image is not much affected by metal-related artifacts.

2D shape of 
tooth can be
seen.

Metal-artifact 
contaminated image

This image was obtained by 
integrating along the normal 
direction of the dental arch.

This integration cancels out metal 
artifacts. 
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This 2D segmentation is used to find accurate 3D tooth ROIs.

Accurate 2D tooth segmentation is obtained from panoramic 
images.



2D tooth segmentation provides a deep learning friendly environment
for 3D tooth segmentation.

Extraction of loose & tight ROIs

𝒞upper−jaw = 𝐫 𝑠 = 𝑥 𝑠 , 𝑦 𝑠 ∶ 𝑠 ∈ 1,⋯ , 640

𝑃upper−jaw 𝑠, 𝑧 = න
−𝑙

𝑙

𝐼upper−jaw 𝐫 𝑠 + 𝑡𝐧 𝑠 , 𝑧 𝑑𝑡

𝐼upper−jaw 𝑥, 𝑦, 𝑧∗

𝑃upper−jaw 𝑠, 𝑧∗

𝐶upper−jaw

A point 𝑠, 𝑧 in 𝑃 corresponds to a point 𝑥 𝑠 , 𝑦 𝑠 , 𝑧 in 𝐼𝐷𝑏𝑜𝑥 = 𝑟 𝑠 + 𝑡𝑛 𝑠 , 𝑧 ∶ −𝑙 ≤ 𝑡 ≤ 𝑙, 𝑠, 𝑧 ∈ 𝐵𝑏𝑜𝑥

⇒ ℛ𝒪ℐ𝑙𝑜𝑜𝑠𝑒(𝐯) = ቊ
𝐼 𝐯 + 𝐭
0

if 𝐯 + 𝐭 ∈ 𝐷𝑏𝑜𝑥
otherwise

𝐷𝑠𝑒𝑔 = 𝑟 𝑠 + 𝑡𝑛 𝑠 , 𝑧 ∶ −𝑙 ≤ 𝑡 ≤ 𝑙, 𝑠, 𝑧 ∈ 𝐵𝑠𝑒𝑔

⇒ ℛ𝒪ℐ𝑡𝑖𝑔ℎ𝑡 𝐯 = ቊ
𝐼 𝐯 + 𝐭
0

if 𝐯 + 𝐭 ∈ 𝐷𝑠𝑒𝑔
otherwise

z

s

panoramic image P(s,z)

P roject back
into CT image

CT image I (x,y,z)

y

x
z

Ext ract ROI s by
3D bounding box

loose ROI

(ROI loose)

tight ROI

(ROI tight)

t t

⊕

3D U-Net

ℛ𝒪ℐ𝑙𝑜𝑜𝑠𝑒 ℛ𝒪ℐ𝑡𝑖𝑔ℎ𝑡 𝑆𝐸𝐺

Individual tooth segmentation from the obtained loose & tight ROIs



Summery: The panoramic images generated by CBCT data can be 

excellent prior information for 3D tooth segmentation.

Tae Jun Jang, Kang Cheol Kim, Hyun 
Cheol Cho, and Jin Keun Seo,, IEEE 
Transactions on Pattern Analysis and 
Machine Intelligence (2021)



The IOS as a concrete image prior can be used without increasing X-ray dose exposure.

Concrete image prior: Intra-Oral Scan (IOS)

Although the aforementioned  method using the panoramic image prior has 

achieved great success in accurate tooth segmentation, there is still a limit to 

accurately reconstructing teeth surfaces. 



Fusion of CBCT and intraoral scan can eliminate 

the cumbersome procedure of conventional impressions.

Jang T J, Yun H S and Seo J K 2022 Fully 
automatic integration of dental CBCT 
images and full-arch intraoral impressions 
with stitching error correction via 
individual tooth segmentation and 
identification arXiv:2112.01784



Step 1: Depth image generation

𝑢

𝑣

Rendered image 𝐼𝑟 Depth image 𝐼𝑑

• The rendered image contains clear geometric features by lighting and shading the surface

• The depth image provides the tooth reliability by expressing the relative distance because the 

tooth positions protrudes forward than the gingiva and other tissues.

Orthographic
Projection

Using PCA, we align X in a new coordinate 

system with three axes 𝐮𝟏, 𝐮𝟐, 𝐮𝟑 .

෨𝑋 =
𝐱1 − ത𝐱

⋮
𝐱𝑛 − ത𝐱

𝑛×3

= 𝑈Σ𝑉𝑇 ⇒ 𝑉 = 𝐩𝐜𝟏, 𝐩𝐜𝟐, 𝐩𝐜𝟑

SVD

𝐮2 = ቐ
𝐩𝐜2 if 𝐩𝐜2, σ𝐱∈𝑋

x−ത𝐱

𝐱−ത𝐱
≥ 0

−𝐩𝐜2 otherwise
,

𝐮3 = ቊ
𝐩𝐜3 if 𝐩𝐜3, σ𝐱∈𝑋𝐧𝐱 ≥ 0
−𝐩𝐜3 otherwise

, 

𝐮1 = 𝐮2 × 𝐮3.

𝐼𝑟 𝑢, 𝑣 = ቐ
max 𝐧𝐩𝑢,𝑣∗ , 𝐮3 , 0

0

if ℓ𝑢,𝑣 ∩ Ω𝑋 ≠ ∅

otherwise
𝐼𝑑 𝑢, 𝑣 = 1 −

𝐧𝐩𝑢,𝑣∗ , 𝐮3 − 𝑧𝑚𝑖𝑛
∗

𝑧𝑚𝑎𝑥
∗ − 𝑧𝑚𝑖𝑛

∗ if ℓ𝑢,𝑣 ∩ Ω𝑋 ≠ ∅

0 otherwise

ℓ𝑢,𝑣 : a line passing through 𝑢, 𝑣 with the direction 𝐮3 𝐧𝐩 : a unit normal at 𝐩

𝐩𝒖,𝒗
∗ = argmax 𝐩, 𝐮𝟑 : 𝐩 ∈ ℓ𝒖,𝒗 ∩ 𝛺𝑋 𝑧𝑚𝑎𝑥

∗ = max 𝐩𝑢,𝑣
∗ , 𝐮𝟑 𝑧𝑚𝑖𝑛

∗ = min 𝐩𝑢,𝑣
∗ , 𝐮𝟑



Step 2: tooth bounding box detection & 3D ROI extraction

2D bounding

box detection

3D extension

of 2D boxes

3D tooth ROIs
𝑋

𝐛1, ⋯ , 𝐛𝐽

2D bounding boxes

𝑋𝐛1 , ⋯ , 𝑋𝐛𝐽



Step 3: Individual tooth segmentation and identification from the ROIs

… …

Segmentation & classification

…

Tooth identification

Concave hull 

using ball-pivoting algorithm

Listing teeth

in order from left

Numbering sequentially

from the incisors

Tooth identification

DGCNN

DGCNN



Step 4: Global-to-local registration of IOS and CBCT

Two stage registration: 1) FPFH (Fast point feature histogram) for global initial alignment

2) ICP(Iterative Closest Point) for local refinement.

𝑋teeth

𝑌teeth

match𝑌teeth
𝐹𝑃𝐹𝐻 𝐱 ≔ argmin

𝐲∈𝑌teeth

𝐹𝑃𝐹𝐻 𝐱 − 𝐹𝑃𝐹𝐻 𝐲

𝐶𝑜𝑟𝑟 = 𝐱,match𝑌teeth
𝐹𝑃𝐹𝐻 𝐱 : 𝐱 ∈ 𝑋 ∩ match𝑋teeth

𝐹𝑃𝐹𝐻 𝐲 , 𝐲 : 𝐲 ∈ 𝑌

𝐹𝑃𝐹𝐻(𝐱) represents the geometric features at 𝐱, and the relevant 
information considering its neighboring points.

Global initialization Local refinement

𝐹𝑃𝐹𝐻 𝐱
𝐹𝑃𝐹𝐻 𝐲

𝐱, 𝐲 ∈ 𝐶𝑜𝑟𝑟(0)

𝒯(0) = argmin
𝒯∈𝑆𝐸 3

෍

𝐱,𝐲 ∈𝐶𝑜𝑟𝑟(0)

𝐲 − 𝒯 𝐱 2 𝒯(𝑘) = argmin
𝒯∈𝑆𝐸 3

෍

𝐱,𝐲 ∈𝐶𝑜𝑟𝑟(𝑘)

𝐲 − 𝒯 𝐱 2

𝐶𝑜𝑟𝑟(𝑘) =ራ

𝑗=1

𝐽

(𝐱,match𝑌𝑡𝑗
𝐱 ): 𝑥 ∈ 𝑋𝑡𝑗

(𝑘−1)

Match𝑌teeth 𝐱 ≔ argmin
𝐲∈𝑌teeth

𝐱 − 𝐲

T-ICP finds correspondences in 
two teeth with the same code.

It prevents undesired point 
matching between different 
teeth.

𝒯∗ ≔ 𝒯(𝐾) ∘ ⋯ ∘ 𝒯(0)

Rigid transformation

𝒯∗ 𝑋

𝑌

We sample randomly three pairs 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , 𝑥3, 𝑦3 , and select the
m if the following condition is met:

𝜏 <
𝑥𝑖 − 𝑥𝑗

𝑦𝑖 − 𝑦𝑗
<
1

𝜏
, 𝑓𝑜𝑟 𝑖 ≤ 1 < 𝑗 ≤ 3.

We denote this filtered subset as 𝐶𝑜𝑟𝑟(0).

IOS CBCT



Step 5: Stitching Error Correction in IOS

Stitching

error

… …

𝑋𝑡1
∗

𝑌𝑡1

𝑋𝑔1
∗

𝑋𝑡𝐽
∗

𝑌𝑡𝐽

𝑋𝑔𝐽
∗

𝓣𝟏
∗∗ = 𝑰𝑪𝑷 𝑿𝒕𝟏−𝟏

∗ ∪ 𝑿𝒕𝟏
∗ ∪ 𝑿𝒕𝟏+𝟏

∗ , 𝒀𝒕𝟏−𝟏 ∪ 𝒀𝒕𝟏 ∪ 𝒀𝒕𝟏+𝟏

𝓣𝑱
∗∗ = 𝑰𝑪𝑷 𝑿𝒕𝑱−𝟏

∗ ∪ 𝑿𝒕𝑱
∗ ∪ 𝑿𝒕𝑱+𝟏

∗ , 𝒀𝒕𝑱−𝟏 ∪ 𝒀𝒕𝑱 ∪ 𝒀𝒕𝑱+𝟏

𝒯𝐽
∗∗ 𝑋𝑡𝐽

∗

𝑌𝑡𝐽 𝒯𝐽
∗∗ 𝑋𝑔𝐽

∗

𝒯1
∗∗ 𝑋𝑡1

∗

𝒯1
∗∗ 𝑋𝑔1

∗

𝑌𝑡1

Registration Correction

𝑋∗∗ =ራ

𝑗=1

𝐽

𝒯𝑗
∗∗ 𝑋𝑡𝑗 ∪ 𝑋𝑔𝑗

𝓣𝒋
∗∗ = 𝑰𝑪𝑷 𝑿𝒕𝒋−𝟏

∗ ∪ 𝑿𝒕𝒋
∗ ∪ 𝑿𝒕𝒋+𝟏

∗ , 𝒀𝒕𝒋−𝟏 ∪ 𝒀𝒕𝒋 ∪ 𝒀𝒕𝒋+𝟏

• By referring to the CBCT teeth, we edit the IOS models with the stitching errors.

• We use one tooth and two adjacent teeth on both sides for reliable correction. 

• It takes advantage of the fact that narrow digital scanning is accurate.

ICP(Iterative Closest Point)



Fusion of CBCT and intraoral scans 



Deep Learning-based 3D bone-teeth-jaw modeling 

using CBCT & Intra Oral Scanner

3D bone-teeth-jaw model 
generated from uncorrected 
CBCT image without using 
IOS.

3D bone-teeth-jaw model 
obtained from the DL method 
that leverages the tooth surface 
information from IOS.

CH Hyun, T Bayaraa, HS Toon, TJ Jang, HA Park, JK Seo 2022 Phys. Med. Biol. 67 175007



The aforementioned segmentation can be the core basis 

of Digital Dentistry.

cephalogram

CT+안면스캔

구강스캔

하악골 운동 Occlusion 분석

CALON

Thank you. 


	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7: Why is the inverse problem of dental CBCT ill-posed & Nonlinear?
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18: Dental CBCT geometry 
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29
	슬라이드 30: Regularization Methods
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	슬라이드 36
	슬라이드 37
	슬라이드 38
	슬라이드 39
	슬라이드 40: Neural Representation 
	슬라이드 41
	슬라이드 42
	슬라이드 43
	슬라이드 44
	슬라이드 45
	슬라이드 46
	슬라이드 47
	슬라이드 48
	슬라이드 49
	슬라이드 50
	슬라이드 51
	슬라이드 52
	슬라이드 53
	슬라이드 54
	슬라이드 55
	슬라이드 56
	슬라이드 57
	슬라이드 58
	슬라이드 59
	슬라이드 60
	슬라이드 61
	슬라이드 62
	슬라이드 63: The aforementioned segmentation can be the core basis of Digital Dentistry.

