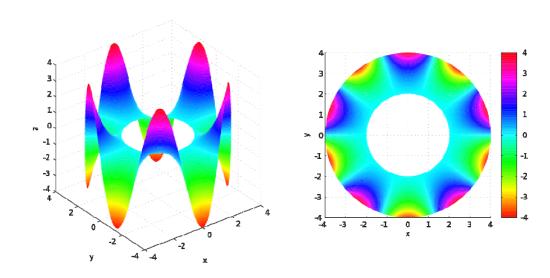
Laplace Equation

$$\nabla \cdot \nabla u = 0$$

Laplace's equation describes equilibrium solutions (or steady state or unchanging in time) such as steady-state electrical potential, steady-state temperature, and so on.



Boundary Value Problem for $\nabla^2 u = 0$

Let Ω be a domain in \mathbb{R}^3 . The Laplace equation of a scalar variable u is

$$\nabla^2 u = u_{xx} + u_{yy} + u_{zz} = 0 \quad \text{in} \quad \Omega.$$

There are three types of boundary conditions:

- Dirichlet boundary condition: $u|_{\partial\Omega} = f$ on the boundary $\partial\Omega$.
- Neumann boundary condition: $\nabla u \cdot \mathbf{n}|_{\partial\Omega} = g$ on the boundary $\partial\Omega$.
- Mixed boundary condition: for two non-overlapping parts Γ_D and Γ_N with $\partial \Omega = \overline{\Gamma_D \cup \Gamma_N}$,

$$u|_{\Gamma_D} = f$$
 and $\frac{\partial u}{\partial \mathbf{n}}|_{\Gamma_N} = \nabla u \cdot n|_{\Gamma_N} = g.$

When there exists an internal source ρ in Ω , u satisfies the Poisson equation:

$$-\nabla^2 u = u_{xx} + u_{yy} + u_{zz} = \rho$$
 in Ω

Boundary Value Problem

For a given $\rho \in C(\bar{\Omega})$ and $h \in C(\partial \Omega)$, consider the following Poisson equation with a Dirichlet boundary condition:

$$\begin{cases}
-\nabla^2 u = u_{xx} + u_{yy} + u_{zz} = \rho & \text{in } \Omega \\
u|_{\partial\Omega} = f.
\end{cases}$$
(1)

lacktriangle By the principle of superposition, we can decompose its solution u as

$$u(\mathbf{r}) = \mathbf{v}(\mathbf{r}) + \mathbf{h}(\mathbf{r}), \qquad \mathbf{r} \in \Omega$$

where *v* and *h* satisfy

$$\left\{ \begin{array}{l} -\nabla^2 v = \rho \quad \text{in } \Omega \\ v|_{\partial\Omega} = 0 \end{array} \right. \quad \text{and} \quad \left\{ \begin{array}{l} -\nabla^2 h = 0 \quad \text{in } \Omega \\ h|_{\partial\Omega} = f. \end{array} \right.$$

Examples

• $u = \frac{1}{2}x(x-1)$ is solution of

$$u''(x) = 1 \ (0 < x < 1), \qquad u(0) = u(1) = 0.$$

• $u(x,y) = \frac{x^2+y^2-1}{4}$ is the solution of

$$abla^2 u = 1 \quad \text{in } \Omega, \qquad u|_{\partial\Omega} = 0$$

where Ω is the unit disk centered at the origin.

Let u be the solution of

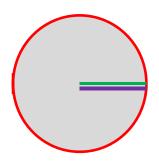
$$\begin{cases} \nabla^2 u = 0 & \text{in } \Omega = (0, \pi) \times (0, \pi) \\ u(x, 0) = g(x), \ 0 = u(x, \pi) = u(0, y) = u(\pi, y), \quad 0 \le x, y \le \pi \end{cases}$$

Use separable variables and Fourier analysis to get

$$u(x,y) = \sum_{n=1}^{\infty} c_n \sinh n(\pi - y) \sin nx$$
 where $\sum_{n=1}^{\infty} c_n \sinh n\pi \sin nx = g(x)$.

Laplace Equation in two dimension

$$\nabla^2 u = u_{XX} + u_{yy} = 0$$



$$x = r \cos \theta$$
$$y = r \sin \theta$$

Let $\Omega = B_1(0)$. Suppose u is a solution of

$$\nabla^2 u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0 \quad \text{in } \Omega, \qquad u|_{\partial\Omega} = f$$

where $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1} \frac{y}{x}$. We can express u as

$$u(r\cos\theta,\ r\sin\theta) = \frac{1}{2\pi} \int_0^{2\pi} f(\cos\tilde{\theta},\sin\tilde{\theta}) \frac{1-r^2}{1+r^2-2r\cos(\theta-\tilde{\theta})} d\tilde{\theta}.$$

• For convenience, we denote $\hat{u}(r,\theta) = u(r\cos\theta, r\sin\theta)$. Then, $\hat{u}(r,\theta)$ satisfies

$$\frac{\partial^2 \hat{u}}{\partial r^2} + \frac{1}{r} \frac{\partial \hat{u}}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \hat{u}}{\partial \theta^2} = 0 \quad \text{in } [0, 1) \times [0, 2\pi]$$

with

$$u(1,\theta) = f(\theta),$$
 $u(r,2\pi) = u(r,0),$ $u(0,\theta) = u(0,0).$ boundary condition continuity condition

$$u(1,\theta) = f(x)$$

$$u(r,0) = u(r,2\pi)$$

$$u(0,\theta) = constant$$

$$\nabla^2 u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$$

$$\begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \theta} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial y}{\partial r} \\ \frac{\partial}{\partial \theta} & \frac{\partial x}{\partial \theta} \end{pmatrix}^{-1} \begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial \theta} \end{pmatrix}$$

$$\nabla^2 = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix}$$

Let $\Omega = B_1(0)$. Suppose u is a solution of

$$\nabla^2 u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0 \quad \text{in } \Omega, \qquad u|_{\partial\Omega} = f$$

where $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1} \frac{y}{x}$. We can express u as

$$u(r\cos\theta, r\sin\theta) = \frac{1}{2\pi} \int_0^{2\pi} f(\cos\tilde{\theta}, \sin\tilde{\theta}) \frac{1 - r^2}{1 + r^2 - 2r\cos(\theta - \tilde{\theta})} d\tilde{\theta}.$$

$$u(1, \theta) = f(x)$$

$$u(r,0) = u(r,2\pi)$$

$$u(0,\theta) = constant$$

Continue the proof: Separation of variables

Consider $\hat{u}(r,\theta) = v(r)w(\theta)$ satisfying

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right)\underbrace{v(r)w(\theta)}_{\hat{u}(r,\theta)} = 0 \quad \text{in } [0,1) \times [0,2\pi]$$

with $u(r, 2\pi) = u(r, 0)$, $u(0, \theta) = u(0, 0)$.

• $\hat{u}(r,\theta) = v(r)w(\theta)$ must satisfy

$$\frac{r^2v''(r)+rv'(r)}{v(r)}=-\frac{w''(\theta)}{w(\theta)}=\lambda=\text{ a constant}.$$

This leads to

•
$$w''(\theta) + \lambda w(\theta) = 0$$
 with $w(0) = w(2\pi)$.
• $r^2v'' + rv' - n^2v = 0$ & $v(0) < \infty$

The eigenvalue problem for w has

$$\lambda = 0 \leftrightarrow w = 1$$
 $\lambda = n^2 \ (n = 1, 2, \dots) \leftrightarrow \sin n\theta, \cos n\theta.$

• For each eigenvalue $\lambda = n^2$, $v(r) = r^n$.

Let $\Omega = B_1(0)$. Suppose u is a solution of

$$\nabla^2 u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0 \quad \text{in } \Omega, \qquad u|_{\partial \Omega} = f$$

where $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1} \frac{y}{x}$. We can express u as

$$u(r\cos\theta, r\sin\theta) = \frac{1}{2\pi} \int_0^{2\pi} f(\cos\tilde{\theta}, \sin\tilde{\theta}) \frac{1 - r^2}{1 + r^2 - 2r\cos(\theta - \tilde{\theta})} d\tilde{\theta}.$$

•
$$w''(\theta) + \lambda w(\theta) = 0$$
 with $w(0) = w(2\pi)$.

•
$$r^2v'' + rv' - n^2v = 0$$
 & $v(0) < \infty$

The eigenvalue problem for w has

$$\lambda = 0 \leftrightarrow w = 1$$
 $\lambda = n^2 \ (n = 1, 2, \cdots) \leftrightarrow \sin n\theta, \cos n\theta.$

- For each eigenvalue $\lambda = n^2$, $v(r) = r^n$.
- Hence, all possible polar separable solutions are

$$v(r)w(\theta) = r^n \cos n\theta$$
 or $r^n \sin n\theta$ $(n = 0, 1, 2, 3, \cdots)$.

Claim: û can be expressed as

$$\hat{u}(r,\theta) = a_0 + \sum_{n=1}^{\infty} \left(a_n r^n \cos n\theta + b_n r^n \sin n\theta \right).$$

• Since this expression for \hat{u} satisfies all conditions except $\hat{u}(1, \theta) = f(\theta)$, it suffices to show that f can be expressed as

$$f(\theta) = \hat{u}(1,\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta)$$

According to Fourier analysis, we can do it.

$u(1,\theta) = f(x)$

$$u(r,0) = u(r,2\pi)$$

$$u(0,\theta) = constant$$

Let $\Omega = B_1(0)$. Suppose u is a solution of

$$\nabla^2 u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0 \quad \text{in } \Omega, \qquad u|_{\partial \Omega} = f$$

where $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1} \frac{y}{x}$. We can express u as

$$u(r\cos\theta,\ r\sin\theta) = \frac{1}{2\pi} \int_0^{2\pi} f(\cos\tilde{\theta},\sin\tilde{\theta}) \frac{1-r^2}{1+r^2-2r\cos(\theta-\tilde{\theta})} d\tilde{\theta}.$$

• Hence, the solution $u(r\cos\theta, r\sin\theta) = \hat{u}(r,\theta)$ can be expressed as

$$\hat{u}(r,\theta) = \frac{1}{\pi} \int_0^{2\pi} f(\tilde{\theta}) \underbrace{\left[\frac{1}{2} + \sum_{n=1}^{\infty} r^n (\cos n\theta \cos n\tilde{\theta} + \sin n\theta \sin n\tilde{\theta}) \right]}_{=\frac{1}{2} + \sum_{n=1}^{\infty} r^n \cos n(\theta - \tilde{\theta})} d\tilde{\theta}.$$

• Denoting $z = re^{i(\theta - \tilde{\theta})}$, we have

$$\frac{1}{2} + \sum_{n=1}^{\infty} r^n \cos n(\theta - \tilde{\theta}) = \Re\left(\frac{1}{2} + \sum_{n=1}^{\infty} z^n\right) = \frac{1 - r^2}{2(1 + r^2 - 2r\cos(\theta - \tilde{\theta}))}$$

and

$$\hat{u}(r,\theta) = \frac{1}{\pi} \int_0^{2\pi} f(\tilde{\theta}) \frac{(1-r^2)}{2(1+r^2-2r\cos(\theta-\tilde{\theta}))} d\tilde{\theta}.$$

Theorem (Mean value property and maximum principle)

Assume that $\nabla^2 u(\mathbf{r}) = 0$ in $\Omega \subset \mathbb{R}^2$. Here, $\mathbf{r} = (x, y)$. If $\overline{B_{r_0}(\mathbf{r}_0)} \subset \Omega$, then $u(\mathbf{r}_0)$ is the average of u over the circle $\partial B_{r_0}(\mathbf{r}_0)$:

$$u(\mathbf{r}_0) = \frac{1}{2\pi r_0} \oint_{\partial B_{r_0}(\mathbf{r}^0)} u(\mathbf{r}) d\ell_{\mathbf{r}}.$$

Moreover, u can not have a strict local maximum or minimum at any interior point of Ω .

• Writing $\hat{u}(r,\theta) = u(\mathbf{r}_0 + r_0(r\cos\theta, r\sin\theta))$, we have

$$\hat{u}(r,\theta) = \frac{1}{2\pi} \int_0^{2\pi} \hat{u}(1,\tilde{\theta}) \frac{1-r^2}{1+r^2-2r\cos(\theta-\tilde{\theta})} d\tilde{\theta}.$$

The above identity directly yields

$$u(\mathbf{r}_0) = \hat{u}(0,\theta) = \frac{1}{2\pi} \int_0^{2\pi} \hat{u}(1,\tilde{\theta}) d\tilde{\theta} = \frac{1}{2\pi r_0} \oint_{\partial B_{r_0}(\mathbf{r}_0)} u(\mathbf{r}) d\ell_{\mathbf{r}},$$

which means that $u(\mathbf{r}_0)$ is the average of u over the circle $\partial B_{r_0}(\mathbf{r}_0)$.

The maximum principle follows from the mean value property.

Theorem (Uniqueness of Dirichlet problem)

Suppose $u, v \in C^2(\Omega) \cap C^1(\bar{\Omega})$ satisfy

$$abla^2 u =
abla^2 v \quad \text{in} \quad \Omega, \qquad u|_{\partial\Omega} = v|_{\partial\Omega}.$$

Then u = v in Ω .

• Denoting w = u - v, w satisfies

$$abla^2 w = 0 \quad \text{in} \quad \Omega, \qquad w|_{\partial\Omega} = 0.$$

From the maximum principle, w can not have a strict maximum or minimum inside Ω . Since $w|_{\partial\Omega}=0$, w=0 in Ω .