Chapter 4. Product spaces

Throughout this chapter, we assume that $(X_j,\mathcal{M}_j,\mu_j), j=1,2$ is two $\sigma-\text{finite}$ measure spaces. Recall that the measure μ_j is called -finite, if X is the countable union of measurable sets of finite measure. Let $X=X_1\times X_2$ and let $\mathcal{R}=\{E_1\times E_2\ :\ E_j\in\mathcal{M}_j\}.$

A product measure space (X, \mathcal{M}, μ) is constructed as follows:

- Define the pre-measure μ' on \mathcal{R} by $\mu'(E_1 \times E_2) = \mu_1(E_1)\mu_2(E_2)$
- By Carathéodory's theorem, we obtain a complete measure μ on X whose σ -algebra of measurable sets contain the product algebra $\mathcal{M}_1 \otimes \mathcal{M}_2 := \sigma$ -algebra generated by \mathcal{R} .
- Since μ_i is σ -finite, so is μ .

Theorem. (4.1.1: Fubini)

Assume $f \in L^1(d\mu)$. Then

$$\int_{X_2} f(x,y) d\mu_2(y) \in L^1(d\mu_1), \quad \int_{X_1} f(x,y) d\mu_1(x) \in L^1(d\mu_2)$$

and

$$\int_{X} f d\mu = \int_{X_{1}} \left[\int_{X_{2}} f(x, y) d\mu_{2}(y) \right] d\mu_{1}(x) = \int_{X_{2}} \left[\int_{X_{1}} f(x, y) d\mu_{1}(x) \right] d\mu_{2}(y)$$

The strategy of the proof.

- 1. Begin by proving the result for $f(x,y) = \chi_{E_1 \times E_2}$. It is trivial!
- 2. Then, prove it for $f \in S_{imple}$.
- 3. Finally, extend it for general $f \in L^1(d\mu)$.

Differentiation Theory

5.1 Differentiation Theory of functions

Throughout this subsection, we consider a bounded function $f:[a,b] \to \mathbb{R}$. We will study a necessary and sufficient condition that f' exist almost everywhere and

$$f(y) - f(x) = \int_{x}^{y} f'(x)d\mu, \quad \mu((x,y)) = |y - x|.$$

• If f is Cantor function, then f' = 0 almost everywhere but

$$1 = f(1) - f(0) \neq 0 = \int_{x}^{y} f'(x) d\mu$$

- Lebesgue's Theorem 5.1.1: Every monotonic function $f: [a,b] \to \mathbb{R}$ is differentiable almost everywhere.
- Recall that the derivative of f at x exists if the following all four numbers are the same finite value:

$$\lim \inf_{h \to 0^{\pm}} \frac{f(x+h) - f(x)}{h}, \quad \lim \sup_{h \to 0^{\pm}} \frac{f(x+h) - f(x)}{h}$$

Definition. (Bounded Variations)

Let $f:[a,b] \to \mathbb{R}$ be a function. The total variation of f on [a,x] is defined to be

$$T_f(a,x) = \sup_n \sup_{\mathcal{P}_n} \sum_{j=1}^n |f(x_j) - f(x_{j-1})|,$$

where $\mathcal{P}_n = \{ a = x_0 < x_1 < \cdots < x_n = x \}.$

The class of functions of bounded variation on [a, b] is denoted by BV[a, b].

It is well known that the space BV[a, b] is a Banach space with norm $||f||_{var} = T_f(a, b)$.

$$\clubsuit$$
 If $f(x) = A \sin nx$, then $T_f(0, \pi) = An$.

Theorem. (5.1.3: Jordan Decomposition)

Every $f \in BV[a, b]$ can be written as two non-decreasing functions.

Proof. Let $T(x) = T_f(a, x)$. The theorem will be proved by showing T - f and T are non-decreasing since f = T - (T - f).

- 1. Let x < y. $T_f(x, y) = T(y) T(x)$
- 2. From the definition,

$$T(x) = T_f(a, x)$$
 is a montone non-decreasing function of x since, for $x < y$, $T(y) = T(x) + T(x, y) \ge T(x)$.

- 3. Clearly, $|f(y) f(x)| \le T_f(x, y) = T(y) T(x)$.
- 4. Hence, $f(y) f(x) \le T(y) T(x)$.
- 5. Hence, $T(x) f(x) \le T(y) f(y)$.

Definition. (5.1.5: Absolute continuous)

A function $f \in BV[a, b]$ is absolute continuous iff $\forall \epsilon > 0$, there exist δ such that whenever a sequence of non-overlapping subintervals $(x_j, y_j) \subset [a, b]$ satisfies $\sum_i (y_i - x_j) < \delta$, then

$$\sum_{j} |f(y_j) - f(x_j)| < \epsilon$$

Note that the Cantor function is not absolute continuous.

Theorem. (5.1.6: Absolute continuity)

If f' exist almost everywhere, $f' \in L^1(d\mu)$, and

$$f(x) = \int_a^x f'(x) \ d\mu, \quad x \in (a, b]$$

then f is absolute continuous.

Proof.

We want to prove that for a given $\epsilon > 0$, there exist δ s.t.

$$\sum_{i} (y_{j} - x_{j}) < \delta \implies \sum_{i} |f(y_{i}) - f(x_{i})| < \epsilon.$$

1. If |f'| is bounded, then we choose $\delta = \frac{\epsilon}{\|f'\|_{\infty}}$ and

$$\sum_{j} |f(y_{j}) - f(x_{j})| \leq \sum_{j} \int_{x_{j}}^{y_{j}} |f'| d\mu \leq C \sum_{j} (y_{j} - x_{j}) < \|f'\|_{\infty} \delta = \epsilon$$

2. If $f' \in L^1(d\mu)$ but not bounded, then we decompose

$$f'=g+h$$
 where g is bounded and $\int |h|d\mu<rac{\epsilon}{2}$

This is possible because the bounded functions are dense in $L^1(d\mu)$. The results follows by choosing $\delta = \frac{\epsilon}{2\|g\|_{\infty}}$.

7

Theorem. (5.1.7: absolute + singular)

Let f be continuous and non-decreasing. Then f can be decomposed into the sum of an absolute continuous function and a singular function, both monotone.

Proof.

- 1. f' exist almost everywhere by Lebesgue's theorem.
- 2. Since f is continuous, $\int_a^x \frac{f(t+h)-f(t)}{h} d\mu = \frac{1}{h} \int_x^{x+h} f(t) d\mu \frac{1}{h} \int_a^{a+h} f(t) d\mu \rightarrow f(x) f(a) \text{ as } h \rightarrow 0.$
- 3. Since $\frac{f(t+h)-f(t)}{h} \to f'(t)$ a.e. as $h \to 0$, by Fatou's lemma,

$$\int_a^x f'(t)d\mu \le \liminf \int_a^x \frac{f(t+h) - f(t)}{h} d\mu = f(x) - f(a)$$

4. Since $f' \ge 0$, $f' \in L^1(d\mu)$. Set $g = \int_a^x f'(t)dt$ and h = f - g. Then g is absolute continuous and h' = 0a.e..