
Chapter 4. Product spaces

Throughout this chapter, we assume that (Xj ,Mj , µj), j = 1, 2 is
two σ−finite measure spaces. Recall that the measure µj is called -finite, if X is the

countable union of measurable sets of finite measure. Let X = X1 × X2 and let
R = {E1 × E2 : Ej ∈Mj}.
A product measure space (X ,M, µ) is constructed as follows:

• Define the pre-measure µ′ on R by
µ′(E1 × E2) = µ1(E1)µ2(E2)

• By Carathéodory’s theorem, we obtain a complete measure µ
on X whose σ-algebra of measurable sets contain the product
algebra M1 ⊗M2 := σ-algebra generated by R.

• Since µj is σ−finite, so is µ.
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Theorem. (4.1.1: Fubini )

Assume f ∈ L1(dµ). Then

∫

X2

f (x , y)dµ2(y) ∈ L1(dµ1),

∫

X1

f (x , y)dµ1(x) ∈ L1(dµ2)

and
∫

X

fdµ =

∫

X1

[∫

X2

f (x , y)dµ2(y)

]
dµ1(x) =

∫

X2

[∫

X1

f (x , y)dµ1(x)

]
dµ2(y)

The strategy of the proof.

1. Begin by proving the result for f (x , y) = χE1×E2 . It is trivial!

2. Then, prove it for f ∈ Simple .

3. Finally, extend it for general f ∈ L1(dµ).
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Differentiation Theory

5.1 Differentiation Theory of functions
Throughout this subsection, we consider a bounded function
f : [a, b] → R. We will study a necessary and sufficient
condition that f ′ exist almost everywhere and

f (y)− f (x) =

∫ y

x
f ′(x)dµ, µ((x , y)) = |y − x |.

• If f is Cantor function, then f ′ = 0 almost everywhere but

1 = f (1)− f (0) 6= 0 =

∫ y

x
f ′(x)dµ

• Lebesgue’s Theorem 5.1.1: Every monotonic function
f : [a, b] → R is differentiable almost everywhere.

• Recall that the derivative of f at x exists if the following all
four numbers are the same finite value:

lim infh→0±
f (x + h)− f (x)

h
, lim suph→0±

f (x + h)− f (x)

h
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Definition. (Bounded Variations)

Let f : [a, b] → R be a function. The total variation of f on [a, x ]
is defined to be

Tf (a, x) = sup
n

sup
Pn

n∑

j=1

|f (xj)− f (xj−1)|,

where Pn = {a = x0 < x1 < · · · < xn = x}.
The class of functions of bounded variation on [a, b] is denoted by
BV [a, b].

It is well known that the space BV [a, b] is a Banach space with
norm ‖f ‖var = Tf (a, b).

♣ If f (x) = A sin nx , then Tf (0, π) = An.
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Theorem. (5.1.3: Jordan Decomposition)

Every f ∈ BV [a, b] can be written as two non-decreasing functions.

Proof. Let T (x) = Tf (a, x). The theorem will be proved by
showing T − f and T are non-decreasing since f = T − (T − f ).

1. Let x < y . Tf (x , y) = T (y)− T (x)

2. From the definition,

T (x) = Tf (a, x) is a montone non-decreasing function of x

since, for x < y , T (y) = T (x) + T (x , y) ≥ T (x).

3. Clearly, |f (y)− f (x)| ≤ Tf (x , y) = T (y)− T (x).

4. Hence, f (y)− f (x) ≤ T (y)− T (x).

5. Hence, T (x)− f (x) ≤ T (y)− f (y).
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Definition. (5.1.5: Absolute continuous)

A function f ∈ BV [a, b] is absolute continuous iff ∀ε > 0, there
exist δ such that whenever a sequence of non-overlapping
subintervals (xj , yj) ⊂ [a, b] satisfies

∑
j(yj − xj) < δ, then

∑

j

|f (yj)− f (xj)| < ε

Note that the Cantor function is not absolute continuous.

Theorem. (5.1.6: Absolute continuity)

If f ′ exist almost everywhere, f ′ ∈ L1(dµ), and

f (x) =

∫ x

a
f ′(x) dµ, x ∈ (a, b]

then f is absolute continuous.
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Proof.

We want to prove that for a given ε > 0, there exist δ s.t.∑
j(yj − xj) < δ ⇒ ∑

j |f (yj)− f (xj)| < ε.

1. If |f ′| is bounded, then we choose δ = ε
‖f ′‖∞ and

∑

j

|f (yj)−f (xj)| ≤
∑

j

∫ yj

xj

|f ′|dµ ≤ C
∑

j

(yj−xj) < ‖f ′‖∞δ = ε

2. If f ′ ∈ L1(dµ) but not bounded, then we decompose

f ′ = g + h where g is bounded and

∫
|h|dµ <

ε

2

This is possible because the bounded functions are dense in
L1(dµ). The results follows by choosing δ = ε

2‖g‖∞ .
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Theorem. (5.1.7: absolute + singular )

Let f be continuous and non-decreasing. Then f can be
decomposed into the sum of an absolute continuous function
and a singular function, both monotone.

Proof.

1. f ′ exist almost everywhere by Lebesgue’s theorem.

2. Since f is continuous,∫ x
a

f (t+h)−f (t)
h dµ = 1

h

∫ x+h
x f (t)dµ− 1

h

∫ a+h
a f (t)dµ →

f (x)− f (a) as h → 0.

3. Since f (t+h)−f (t)
h → f ′(t) a.e. as h → 0, by Fatou’s lemma,

∫ x

a
f ′(t)dµ ≤ lim inf

∫ x

a

f (t + h)− f (t)

h
dµ = f (x)− f (a)

4. Since f ′ ≥ 0, f ′ ∈ L1(dµ). Set g =
∫ x
a f ′(t)dt and h = f − g .

Then g is absolute continuous and h′ = 0a.e..
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