Chapter 4. Product spaces

Throughout this chapter, we assume that (Xj, M;, p1j),j = 1,2 is
two o—finite measure spaces. Recall that the measure 1 is called finite, if X is the
countable union of measurable sets of finite measure. L€t X = X7 X X5 and let
R:{El x Ey EJEMJ}

A product measure space (X, M, ) is constructed as follows:

e Define the pre-measure p/ on R by
' (Exr x Ez) = p1(Ex)p2(E2)

e By Carathéodory's theorem, we obtain a complete measure u
on X whose o-algebra of measurable sets contain the product
algebra My ® M, := o-algebra generated by R.

e Since p; is o—finite, so is f.



Theorem. (4.1.1: Fubini )

Assume f € LY(du). Then

/ F(x,y)dpaly) € L:(dpa), / F(x, y)dpua(x) € L(dpa)
Xo X1

and
[ [ I 2 F(xy)eialy) | i) = [ 2 I | P ) ()| )

The strategy of the proof.
1. Begin by proving the result for f(x,y) = Xg x5, It is trivial!
2. Then, prove it for f € Simple-
3. Finally, extend it for general f € L1(du).



Differentiation Theory

5.1 Differentiation Theory of functions

Throughout this subsection, we consider a bounded function
f :[a, b] — R. We will study a necessary and sufficient
condition that f’ exist almost everywhere and

y
fly) - F(x) = / FO)dp (%) = ly — x|

e If f is Cantor function, then f' = 0 almost everywhere but

1=f(1) - f(0) £ 0= /y F'(x)du

X
e Lebesgue’s Theorem 5.1.1: Every monotonic function
f :[a, b] — R is differentiable almost everywhere.
e Recall that the derivative of f at x exists if the following all
four numbers are the same finite value:

f(x+ h) —f(x) f(x+ h)— f(x)

lim inf,_ o+ p ,  lim supp_ o+

2

h



Definition. (Bounded Variations)

Let f : [a,b] — R be a function. The total variation of f on [a, x]
is defined to be

Tr(a,x) = sup s;leij — f(x-1)l,
n J‘ 1

where P, ={a=xp <x1 < -+ < X5 = x}.
The class of functions of bounded variation on |[a, b] is denoted by
BV]|a, b].

It is well known that the space BV/|a, b] is a Banach space with
norm ||f||var = T¢(a, b).

& If f(x) = Asinnx, then T¢(0,7) = An.



Theorem. (5.1.3: Jordan Decomposition)

Every f € BV|a, b] can be written as two non-decreasing functions.

Proof. Let T(x) = T¢(a,x). The theorem will be proved by
showing T — f and T are non-decreasing since f = T — (T — f).

1. Let x <y. Te(x,y) = T(y) — T(x)
2. From the definition,

T(x) = T¢(a,x) is a montone non-decreasing function of x

since, for x <y, T(y) = T(x)+ T(x,y) > T(x).
3. Clearly, |f(y) = f(x)| < Tr(x,y) = T(y) — T(x).
4. Hence, f(y) — f(x) < T(y) — T(x).
5. Hence, T(x) —f(x) < T(y) — f(y).



Definition. (5.1.5: Absolute continuous)

A function f € BV|a, b| is absolute continuous iff Ve > 0, there
exist  such that whenever a sequence of non-overlapping
subintervals (x;, y;) C [a, b] satisfies > (y; — x;) < 0, then

Zlf(yj)—f(xj')l <e

Note that the Cantor function is not absolute continuous.
Theorem. (5.1.6: Absolute continuity)

If f' exist almost everywhere, f' € L*(du), and

f(x):/x f'(x) du, x € (a, b]

then f is absolute continuous.



Proof.

We want to prove that for a given € > 0, there exist J s.t.
2l —x) <o =3 1f(y) - fig)l <e
1. If |f'] is bounded, then we choose § = m and

Y
STIFOR-F0) < 3 [ 1F1di < € 305) < 18 = ¢
j j j
2. If f € LY(dp) but not bounded, then we decompose
f' = g + h where g is bounded and /hd,u < %

This is possible because the bounded functions are dense in

Ll(d,u). The results follows by choosing § = m-



Theorem. (5.1.7: absolute + singular )

Let f be continuous and non-decreasing. Then f can be
decomposed into the sum of an absolute continuous function
and a singular function, both monotone.

Proof.
1. f’ exist almost everywhere by Lebesgue’s theorem.
2. Since f is continuous,
[y Ty = [ (0 dp— [T () dp—
f(x)—f(a) as h— 0.

3. Since w — f’(t) a.e. as h — 0, by Fatou's lemma,
/ F(t)dp < lim inf/ Wdu — f(x) - f(a)

4. Since f' >0, f' € L}(dp). Set g = [Jf'(t)dt and h=f —g.
Then g is absolute continuous and h’ = Qa.e..
O



