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Electrical Tissue Properties Imaging

Aim: Visualize conductivity (σ) and permittivity (ε) distribution.

EIT

MREIT

MREPT

[ Seo/Woo, ”Magnetic Resonance Electrical Impedance Tomography”, SIAM Review, (2011)]



Image Reconstruction of
σ (conductivity) / ε (permittivity)

Goal: Develop a well-posed system

S X = b subject to constraints on X

X = σ, ε to be imaged.
b : Measured data (boundary current-voltage using

electrodes, magnetic field using MRI scanner ...)

S : Sensitivity matrix made from Maxwell equations, data

collection method, domain geometry ...

Major issue: How to convert the ill-posed problem to a well-posed one?



Reconstruction of σ (conductivity) / ε (permittivity)

To evaluate them, we must produce electrical current
density J & electric field E inside the imaging domain Ω.

Inject current (dc / ac) Induce current (ac only)
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∇ · (γ∇u) = 0 −∇2H = ∇ ln γ ×∇× H− iµ0ωγH

E ≈ −∇u (u :=electric potential), H (magnetic field), γ = σ + iωε
(admittivity)

Using this with measurable data, we develop a system SX = b.



Electrical conductivity σ & permittivity ε

Electrical tissue properties include electrical conductivity
σ & electrical permittivity ε.

J = σ E J = iωε E



Cell Structure in Tissues & Effective γ = σ + iωε
γ = σ + iωε of a biological tissue under the influence of a
time-harmonic electric field E at ω, is determined by its ion
concentrations in extra- and intracellular fluids, membrane
characteristics and other factors.∫
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Electrical Tissue Property Imaging

Biological tissues and organs exhibit distinct electrical properties
depending on their physiological functions and pathological
states

Low frequency (0 Hz ≤ ω/2π ≤ 1MHz):

∇ · ( (σ + iωε)︸ ︷︷ ︸
conductivity+iωpermittivity

∇u) = 0

Frequency (10 MHz ≤ ω/2π ≤ 1GHz):

−∇2H =
∇(σ + iωε)
σ + iωε

×∇× H− iµ0ω(σ + iωε)H



About Data. What is measurable?

Inject current (dc / ac) Induce current (ac only)
E+

E− electrodes

Ω

σ, ε, J, H
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·z
coil

I sinωt
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·z

∇ · (γ∇u) ≈ 0 & −∇2H = ∇ ln γ × (∇× H)− iωµγH

EIT (≤ 1MHz): Boundary voltage u|∂Ω using electrodes.
MREIT (≤ 1kHz): Internal Hz using MRI
MIT (≤ 10MHz): External magnetic field using coils
MREPT (128MHz at 3T MRI): Internal H+ = 1

2(Hx + iHy)



Compute σ using ∇u ‖ (0, 0, 1)

To compute σ of a cylindrical object Ω by Ohm’s law, we inject a
DC current of ImA between top and bottom surface electrodes,
and measure the voltage difference V between the electrodes.

` σ = 1
R
`
A

A

I

σ =
1
R

l
A
, V = IR

R : resistance of the cylinder
A : electrode surface area

l : length

Here, V is V = u|top − u|bottom, where u is the potential generated
by the injection current:

{ ∇ · (σ∇u) = 0 in Ω

σ ∂u
∂ν

∣∣∣
∂Ω

= I(mA)
A(area)

(
χtop − χbottom

)



Compute σ + iωε using ∇u ‖ (0, 0, 1)

` σ + iωε

A

I sinωt The admittivity γ is com-
puted by

γ = σ + iωε =
1
Z
`

A
Z = V/I: impedance.
ε permittivity

V = u|top − u|bottom where u satifies

{ ∇ · (γ∇u) = 0 in Ω

γ ∂u
∂ν

∣∣
∂Ω

= I/A
(
χtop − χbottom

)



How to measure γ for non-cylindrical domain Ω?

We cannot control∇u unlike CT & MRI! It is determined by the
geometry Ω & the current driving electrodes (P+

1 , P−1 ).

∇ · (γ∇u1) = 0 in Ω, γ
∂u1

∂ν
|∂Ω = I[δ(P+

1 − ·)− δ(P−1 − ·)]

γ =??

P−
1 P−

2 P+
2 P+

1

V

I

Equipotneial 
         line

Current  
line

 Impedance
       Z= V/I 



Math. Formula for Computing γ = σ + iωε

P−
1 P−

2 P+
2 P+

1

Let uj (j = 1, 2) satisfy
{
∇ · (γ∇uj) = 0 in Ω

γ ∂uj

∂ν
|∂Ω = gj

† gj := I(δ(P+
j − ·)− δ(P−j − ·))

γ =
[
u1(P+

2 )− u1(P−2 )
]
/I︸ ︷︷ ︸

Z1,2 (measurable quantity)

( ∫

Ω

∇u1 · ∇u2dx
)−1

︸ ︷︷ ︸
to be computed

How to compute
∫
Ω∇u1 · ∇u2dx?

Impedance Z1,2 depends mainly on electrode positions (P±
1 ,P

±
2 )

& the geometry of Ω. Why? How?
γ changes with ω. Why? How?



Use Neumann function NΩ to measure γ
The relation between impedance Z & impedivity γ−1 is influenced by
the geometry ∂Ω & electrode positions P±j .

V

I

Equipotneial 
         line

Current  
line

 Impedance
       Z= V/I γ =

1
u1(P±2 )

∫

∂Ω

NΩ(P±2 , y)g1(y)dsy

︸ ︷︷ ︸
γ u1(P±2 )

{
∇ · (γ∇u1) = 0 in Ω

γ ∂u1

∂ν
|∂Ω = δ(P+

1 − ·)− δ(P−1 − ·)
Neumann function NΩ depends sensitively on the geometry ∂Ω:

S(−1
2

I +K∗)−1 = I  NΩ = (−1
2

I +K)−1Φ

>Φ(x, y) := 1
4π|x−y| , Sf(x) :=

∫
∂Ω

Φ(x, y)f(y)dsy,

> K : L2(∂Ω)→ L2(∂Ω) defined by Kf(x) :=
∫
∂Ω

∂
∂νy

Φ(x, y)f(y)dsy



Both σ = <{γ} and ε = ={γ/ω} in∇(γ∇u) = 0 change
with ω because of non-conducting cell membrane.

V

I     

10 Hz

100 MHz

γ = cI/V
σ = c<{I/V}
ε = c 1

ω
={I/V}

c depends on the geometry ∂Ω and electrode positions.
Low frequency currents are blocked by the nonconducting
membrane so it pass through extras cellular fluid. High
frequency currents pass through the membranes. Why?
X
∣∣∣ γ|membrane
γ|background

∣∣∣ ≈ 0 at 10 Hz, whereas
∣∣∣ γ|membrane
γ|background

∣∣∣ � 0 at 100MHz.



ω-dependent effective γ can be estimated by the use of
double layer (membrane) potential via homogenization.
ω-dependent effective γ is expressed as

γ (effective) = [γij] = γ0

[
δij −

γ0d
γm

∫

Γ
νj(I +

γ0d
γm
T )−1νids

]

T [φ] =
∂

∂ν

∫

Γ

∂

∂νy
G(· − y)︸ ︷︷ ︸

Green

φ(y)dsy

[Ammari, Garnier, Giovangigli, Jing, Seo, Spectroscopic imaging of a dilute cell suspension, JEMS 2015]

γ0d
γm

= σ0d
σm
� 0 at ω = 0

 anisotropic γ
γ0d
γm

= d(σ0+iωε0)
σm+iωεm

≈ 0 at ω = 108

 isotropic γ
Γ:=membrane surface

d :=thickness of membrane

γm := γ|membrane, γ0 := γ|background



Human Experiments with Multiple Electrodes

Admittivity γ := σ + iωε & potential u are connected by

∇ · (γ∇u ) = 0 in a human body Ω

Effective impedivity γ−1 (3×3 matrix) depends on scale and ω.
Impedance Zj,k (measurable quantity; see the figure below) is the
ratio between j−th current (injected by j-th pair of electrodes) and the
induced potential difference between the k-th pair:

Zj,k =
Vj,k

I
=

1
I2

∫

Ω

γ∇uj · ∇ukdx

I

V j,k

j-th pair
of electrodes

Apply
Neumann data

Meausure
Dirichlet data

k-th pair
of electrodes



Body Impedance Measurement (Not Tomography)

∇ · (γ∇u1) = 0

...

...

V 1

I

I

V 1

I

V 2

I

V 3

I

V 4

Z1
body ≈ (Z1+Z2)−(Z3+Z4)

2

Zj = V j

I = 1
I2

∫
Ω

1
γ

∣∣γ∇uj
∣∣2 dx : measurable

Z1 ≈ 1
I2

∫
Ωra

1
γ

∣∣γ∇u1
∣∣2 dx+ 1

I2

∫
Ωbody

1
γ

∣∣γ∇u1
∣∣2 dx

+ 1
I2

∫
Ωrl

1
γ

∣∣γ∇u1
∣∣2 dx

(a) (b)

Human body Ω can be decomposed into five parts. The commercial
system (InBody) calculates the volume of the body water by

1
I2

∫

Ωbody

γ|∇u1|2dx =
1
2
(Z1 + Z2 − Z3 − Z4)
︸ ︷︷ ︸

Eliminate contributions of legs and arms

This method reduces electrode position uncertainties! Why?



Electrical Impedance Tomography - 16 channel EIT

16 channel EITFrequency difference EIT

Time-difference EIT

uj:=potential due to j-th injection current:

∇ · (γ∇uj) = 0 in Ω
(u + zkγ

∂u
∂n )|Ek = Uk, k = 1, · · · ,E

γ ∂uj

∂n = 0 on ∂Ω \ ∪16
k=1Ek∫

Ek
γ ∂u

∂n = 0 if k 6= j, j + 1∫
Ej
γ ∂uj

∂n ds = I = −
∫
Ej+1

γ ∂uj

∂n ds

where zk is the contact impedance of the
kth electrode Ek and Uk is the voltage on Ek.

Measured EIT data is

F =
[
V1,1, · · · ,V1,16, · · · · · · ,V j,k, · · · , · · ·

]T

where
V j,k := Uj

k − Uj
k+1



History of EIT

Henderson and Webster (1978): EIT by designing the
impedance camera.
Calderón (1980): Mathematical inverse problem to identify σ
entering ∇ · (σ∇u) = 0 in a domain Ω from the knowledge of
NtD map.
Barber and Brown (1982) developed an EIT version of the CT
back-projection algorithm. The first EIT device (Sheffield
Mark 1) with one active current source.
Isaacson (1986) suggested the concept of distinguishability.
RPI group developed EIT system with multiple active current
sources to maximize the distinguishability.
Dräger and Swisstom (2010-) developed commercial EIT
systems for visualizing the regional distribution of ventilation
in the lungs continuously, without radiation, and directly at
the patients bedside.



Electrical Impedance Tomography

Reconstruct γ = σ + iωε at each ω and time t. If it is
too difficult, reconstruct its changes:

∂

∂t
γ &

∂

∂ω
γ

> Note that σ and ε depend on position x, ω, and t.

Measured Data: Zj,k =
Vj,k

I
=

1
I2

∫

Ω
γ∇uj · ∇ukdx, (∀|j− k| > 1)

∂
∂tγ Time-difference EIT

∂
∂ω
γ Frequency-difference EIT



Reciprocity Principle: Zj,k = Zk,j.

u8(P3, ω, t)− u8(P2, ω, t)︸ ︷︷ ︸
Z8,2←measured data

=

∫

Ω
γ∇u8 · ∇u2dr = u2(P9, ω, t)− u2(P8, ω, t)︸ ︷︷ ︸

Z2,8←measured data

P1

P4
P5

P6

P7

P10

P11

P12 P13

P14

P15

P16

γ(r, ω, t)

Ω

i(̃t) = I sin(ωt̃)︸ ︷︷ ︸
Nuemann data

P9

P8

P3

P2

v

i

stream and equipotential lines for 16 ch.phantom

u8(P3, ω, t) − u8(P2, ω, t)︸ ︷︷ ︸
Dirichlet data

∇ · (γ∇u8) = 0 in Ω
ν · (γ∇u8)|∂Ω = g8

g8 = δ(· − P9)− δ(· − P8)

> For the ease of explanation,
let I = 1mA and use the point
electrode model.



EIT Reconstruction Algorithm

tdEIT aims to reconstruct ∂
∂tγ from d

dt Z
j,k & the relation

d
dt

Zj,k

︸ ︷︷ ︸
d
dt Vj,k

≈
∫

Ω

∂γ

∂t
∇uj · ∇ukdx ≈

∑

m

∫

Ωm

∂γ

∂t
∇uj · ∇ukdx

︸ ︷︷ ︸
N(j-1)+k-component of S∂γ

∂t

Neumann-to-Dirichlet map

· · ·

Sensitivity method


...
· · ·

∫
Ωm
∇ui · ∇ujdx · · ·

...




S ∂
∂tγ = ∂

∂tV

reconstruction

Sensitivity matrix

depends on electrode

displacement,

arrangement of

injection current, mesh

structure, and the

boundary geometry.

Data Zj,j−1, Zj,j, Zj,j+1

are not reliable due to

electrode contact

impedance uncertainty.



EIT: Linearized Method

d
dt

Vj,k

︸ ︷︷ ︸
data

≈
∫

Ω

∂

∂t
γ∇uj · ∇ukdx ≈

∑

m

∫

Ωm

∇uj
0 · ∇uk

0dx
︸ ︷︷ ︸

sN(j−1)+k,m

∂

∂t
γ|Ωm

Find a suitable linear combination of column vectors
(sN(j−1)+k,1), · · · , (sN(j−1)+k,1) which matches with the data
d
dt(V1,1, · · · ,VN,N).

Ωm

I

V 1,3V 1,4
V 1,5

V 1,6

V 1,7

V 1,8

V 1,9

V 1,10

V 1,11 V 1,12 V 1,13 V 1,14

V 1,15

1-st pair

(N(j − 1) + k)-th component of sm

=
∫
Ωm
∇uj · ∇ukdx

∂
∂tγ

∂
∂tV

j,k

> Inclusion detection of recovering ∪{Ωm : d
dtγm 6= 0} is linear.....

[Harrach/S, SIAMA 2010]



Positive, Zero, Negative Sensitivity

=

∫

Ωm

∇u
1 · ∇u

6

∫

Ωm

∇u
12 · ∇u

15

Image of ∇u1 · ∇u6 ∇u12 · ∇u15

Sensitivity matrix

d
dt
V 1,6

d
dt
V 12,15

d
dt
V∂γ

∂t



Static EIT is severely ill-posed.

EIT data V depends mainly on the boundary geometry and the
electrode positions, whereas its dependence on a local
perturbation of γ is relatively small. See the structure of
eigenvectors of EIT Sensitivity matrix.

λ1
λ5

λ1
= 0.8599 λ10

λ1
= 0.6626 λ20

λ1
= 0.4384

λ40

λ1
= 0.0328 λ50

λ1
= 0.0049 λ60

λ1
= 0.0009 λ70

λ1
= 0.0001



Lung EIT to monitor ∂γ
∂t from d

dtV
j,k

EIT has its unique ability to allow long-term, continuous monitoring of
lung ventilation at the bedside. Lung EIT aims to provide dynamic images
of ∂γ

∂t from
d
dt

Vj,k ≈
∫

Ω

∂γ

∂t
∇uj · ∇ukdx, ∀|j− k| > 1

.

Swisstom: BB2 Drager: 
PulmoVista 500



Get Ω & electrode positions.

It is important to match Ω to the patient’s geometry, in order to use the
relation Vj,k =

∫
Ω γ∇uj · ∇ukdx effectively.



Reduce the forward modeling errors.

Thanks to rapid development of 3D scanning, we have a chance
to alleviate the forward modelling error including electrode
position Pj and boundary geometry ∂Ω. We cannot deal with the
uncertainty of the reference conductivity distribution γ0.

Barber and Brown’s observation: If electrodes are spaced 10 cm apart
around the thorax, variation in positioning of 1 mm will produce errors
of 1% in the data V.



Combine spatial and temporal regularization to
deal with the ill-posed nature.

Enforcing the temporal monotonic constraint on lung
ventilation-related conductivity change, the corresponding inverse
problem becomes better posed.

Decompose ∂
∂tσ into ventilation and parts

∂

∂t
σt(x) =

∂

∂t
σL

︸ ︷︷ ︸
ventilation

+
∂

∂t
σH

︸ ︷︷ ︸
others

x ∈ Ω.

Use a band-pass filter to extract the ventilation-related signal :

d
dt

Vj,k
L (t) ≈ −

∫

Ω

∂σt
L

∂t
∇uj · ∇ukdx

[Liangdong Zhou & Bastian Harrach, Seo; Monotonicity-based Electrical
Impedance Tomography Lung Imaging(2015)]



Monotonic assumption on the ventilation-related
conductivity variation

Under this assumption, the ventilation-related data VL ( N-channel EIT
system) is either positive or negative semidefinite matrix:

VL(t) =




V1,1
L (t) · · · V1,N

L (t)
V2,1

L (t) · · · V2,N
L (t)

...
. . .

...
VN,1

L (t) · · · VN,N
L (t)



.

To determine whether the matrix d
dtVL(t) is positive or negative

semi-definite, we use the formula:

aT d
dt
VL(t)a = −

∫

Ω

∂σL

∂t
∇
(∑

j

ajuj
)
· ∇
(∑

k

akuk
)

dx

for all a = (a1, · · · , aN)T ∈ RN.



Remarkable EIT data pattern in human
experiments

infx∈Ω
∂σL
∂t (x) ≥ 0 ⇒ d

dtVL w 0 (positive-semidefinite)

supx∈Ω
∂σL
∂t (x) ≤ 0 ⇒ d

dtVL v 0 (negative-semidefinite)

Observation: Ṽj,k(t) have a similar time-varying pattern:

Ṽj,k(t) :=
Vj,k(t)

sign
( ∫

Ω∇uj · ∇uk
) +

(
1− sign

( ∫

Ω
∇uj · ∇uk

))
aveVj,k

⇒



MREIT for recovering σ

Imaging Objects

MRI Scanner

Current Source Pulse Sequence Image Reconstruction Software

MREIT aims to provide σ using MRI. EIT data is insufficient to provide σ.



MREIT Math. Model

When modeling, we must take account of well-posedness
(Uniqueness, Existence, Stability).

x-axis

y-axis B0

z-axis

 k-space dataata

Real part of
S1(kx, ky, z0)
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E−2

E+
2

E+
1 E−1
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E−2E+
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RF

Slice
Selection

Phase
Encoding

Reading
 
Positive
Current I+
 

90º 180º

Tc/2I

−I

Sj(kx, ky, z0) =

∫

Ωz0

M(x, y, z0)e
iδ(x,y,z0)eiγTcBz,j(x,y,z0)ei(xkx+yky)dSxy

1

µ0

∇×Bj = −σ∇uj

I = ±
∫

E±
j

σ∇uj · n ds

(j = 1, 2) Bz,1 & Bz,2σ



MREIT aims to visualize σ.

Both EIT and MREIT use a pair of electrodes E+ and E− to

produces J = (Jx, Jy, Jz) and B = (Bx,By,Bz). The relation among

σ, J,B is

−σ∇u = J =
1
µ0
∇× B

EIT vs MREIT:
EIT uses electrodes to get boundary measurements.
MREIT uses MRI to get the internal data Bz, z-component of
B = (Bx,By,Bz).



How to measure Bz. (1989, Joy et al, Toronto Group)

MRI scanner can provide the complex k-space MR signal S(kx, ky)
involving Bz on the slice Ωz0 = Ω ∩ {z = z0}:

S(kx, ky) =

∫ ∫

Ωz0

M(x, y, z0)ei(ηBz(x,y,z0)Tc+δ(x,y,z0))ei(xkx+yky)dxdy

Fourier transform of S(kx, ky)  

M(x, y, z0) := M(x, y, z0) eiηBz(x,y,z0)Tc eiδ(x,y,z0).

Recessed
Copper Electrode

Saline

Agar

Recessed
Copper Electrode

(a)M(x, y, z0) (b)wrapped Bz (c) Bz



MREIT using full components of H:
Major drawback: It requires subject rotation inside MRI scanner.

Least square method
[Zhang 1992]

min
σ

1
2
‖∇ ×H + σ∇u ‖2

Finite element model True

1/σ

1/σ 1/σReconstructed

Low spatial resolution

[Woo, Lee, Moon 1994], [Idel and Birgul
1995]

J−substitution method
[Kwon, Seo, Yoon, Woo 2001]

∇ ·
( |J|
|∇u|∇u

)
= 0

True Reconstructed 1/σ 1/σ

High spatial resolution

In 2005-present, CDII by Nachman,
Tamasan, Timonov, Joy



Inverse Problem of MREIT

Recover σ from the Bz data as a function of σ and Neumann data g:

Λσ(g)(r) :=
µ0

4π

∫

Ω

σ(r′) [(x− x′)∂u
∂y (r′)− (y− y′)∂u

∂x (r′)]

|r− r′|3 dr′

where u satisfies { ∇ · (σ∇u) = 0 in Ω

σ ∂u
∂ν
|∂Ω = g



Relation between σ and Λσ(g) = Bz

From Ampere’s law J = 1
µ0
∇× B,

µ0∇× J = ∇×∇× B = −∇2B +∇∇ · B︸ ︷︷ ︸
=0

= −∇2B

∇× J = −∇× [σ∇u] = −∇σ ×∇u− σ∇×∇u︸ ︷︷ ︸
=0

Denoting ẑ = (0, 0, 1),

1
µ0
∇2Bz = ẑ · ∇σ ×∇u = d · ∇σ (d(r) := ẑ×∇u(r))

If Bz is convex at r, then σ(r)↗ in d(r)-direction.
If Bz is concave at r, then σ(r)↘ in d(r)-direction.
If∇2Bz(r) = 0, then σ(r) does not change in d(r)-direction.



Key observation

X Bz is blind to∇xyu · ∇xyσ.

Non-uniqueness theorem

For a given g ∈ H−1/2(∂Ω) and a conductivity σ, ∃ infinitely many σ̃

such that

Λσ̃[g] = Λσ[g] in Ω

σ (left) and σ̃ (right) produce the
same Bz.
Here, σ̃ := σ

φ′(u)
with φ being an

increasing function.



∇2Bz data can trace a change of σ in the direction
∇u× ẑ

For uniqueness, we need two linearly independent injection
currents.

∇2Bz,j = ∇ lnσ · (σ∇uj × ẑ) (j = 1, 2)

Current

Cu
rre

ntDominant Contrast
along
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Use four electrodes to produce Bz,1 & Bz,2:

Bz,j(r) =
µ0

4π

∫

Ω

σ(r′) ẑ · [(r− r′)×∇uj(r′)]
|r− r′|3 dr′ (j = 1, 2)

where uj satisfies




∇ · (σ∇uj[σ]) = 0 in Ω,

I =
∫
E+j
σ
∂uj[σ]
∂n ds = − ∫E−j σ

∂uj[σ]
∂n ds ,

∇uj[σ]× n|E+j ∪E−j = 0, σ
∂uj[σ]
∂n = 0 on ∂Ω \ E+

j ∪ E−j

E1
+

E1
−

E2
+

E2
−

Ω

Bz1

Bz2
Injection current
produces E, J, B



Harmonic Bz-algorithm [2002; Seo, Kwon, Yoon, Woo]

σ is reconstructed by only Bz:

∇2
xy lnσ = ∇xy ·

(
A†
[ ∇2Bz,1
∇2Bz,2

])

where A† :=
1
µ0

[
σ ∂u1[σ]

∂y −σ ∂u1[σ]
∂x

σ ∂u2[σ]
∂y −σ ∂u2[σ]

∂x

]−1

This formula exists in an implicit form owing to the nonlinear relationship
between σ and Bz, but it was designed to use a fixed-point theory. The major
drawback of EIT, ill-posedness is mainly due to the fact that the overall flow of J
is insensitive to local perturbations in σ. However, the harmonic Bz method
takes advantage of this fact to make the algorithm work.
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MREIT: Animal imaging experiment

Harmonic Bz-algorithm requires to solve the forward model in which we
need to know Ω and Neumann data (semi-)automatically.

Domain Ω: We use segmentation methods to extract ∂Ω from
MR-image automatically.
Neumann boundary data: Use semi-automatic algorithm to get
Neumann condition.
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MREIT: Animal σ-imaging
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CoReHa: Software for MREIT

MREIT Matlab Toolkit(2006: CJ Park, SH Lee, Kwon, Woo, Seo),
CoReHA(Conductivity Reconstructor using Harmonic Algorithm 2008:
GW Jun, CO Lee, Woo, Seo)



MREIT: Animal imaging
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MREIT Images
MREIT is the most advanced conductivity imaging technique and now
can offer state-of-the-art conductivity imaging for animal and human
experiments.

Magnetic resonance magnitude image 

MR
magnitude
image

Conductivity
image
(MREIT)



Challenging issues in year 2000: Proposal for
MREIT research

Reconstruct conductivity using only Bz: Solved X
High resolution Image: Solved with 5mA X
Anisotropic conductivity imaging: Solved mathematically but not
feasible. Need fundamental studies.
Animal Experiment: Solved X
Human experiment: Partially Solved (Legs is OK but far from OK
for brain. )
Accuracy analysis: Partially Solved X We made many conjectures
(99.99% sure). See SIAM Review 2011 and PM (review 2008).



Challenging issue in MREIT for Human imaging.

FDA safety limit: 1mA. Reducing the amount of current⇒
Low SNR data⇒ Reconstruction errors and artifacts. We
need to handle noise.



Year 2015: New Challenges in MREIT

High resolution Image with 1mA
Low SNR: Denoising, regularization, PDE-based image restoration
Sensitivity enhancement by improvements in RF coil and pulse
sequence

Functional imaging
Fast imaging method: Parallel Imaging, Reduced FOV and ROI
imaging
Sparse Sensing or Compressed Sensing (skipped K-space)
Statistical image analysis

Visual understanding effective conductivity
Dual Frequency Imaging: MREIT & MREPT



Thank you.
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This is the first book that presents a comprehensive introduction 

to and overview of electro-magnetic tissue property imaging 

techniques using MRI, focusing on Magnetic Resonance Electrical 

Impedance Tomography (MREIT), Electrical Properties Tomography 

(EPT) and Quantitative Susceptibility Mapping (QSM). The contrast 

information from these novel imaging modalities is unique since 

there is currently no other method to reconstruct high-resolution 

images of the electro-magnetic tissue properties including electrical 

conductivity, permittivity, and magnetic susceptibility. These three 

imaging modalities are based on Maxwell’s equations and MRI data 

acquisition techniques. They are expanding MRI’s ability to provide 

new contrast information on tissue structures and functions.

To facilitate further technical progress, the book provides in-depth 

descriptions of the most updated research outcomes, including 

underlying physics, mathematical theories and models, measurement 

techniques, computation issues, and other challenging problems.

We focus on experimental mathematics. We develop mathematical
theory in such a way that it can guide experiment on what to look for.
Modeling/Analysis⇔Numerical Simulation⇔Experiment




