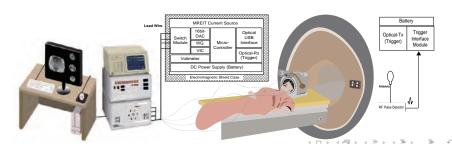
Mathematical Models and Methods for Noninvasive Bioimpedance Imaging

Jin Keun Seo

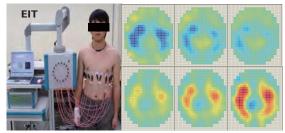
Computational Science & Engineering Yonsei University, Korea

ICIAM 2015 at Beijing (2015.8.13)



Electrical Tissue Properties Imaging

Aim: Visualize conductivity (σ) and permittivity (ϵ) distribution.



[Seo/Woo, "Magnetic Resonance Electrical Impedance Tomography", SIAM Review, (2011)]

Image Reconstruction of σ (conductivity) / ϵ (permittivity)

Goal: Develop a well-posed system

$$\mathbf{S} X = \mathbf{b}$$
 subject to constraints on X

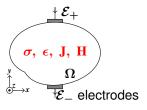
- $X = \sigma, \epsilon$ to be imaged.
- b : Measured data (boundary current-voltage using electrodes, magnetic field using MRI scanner ...)
- S: Sensitivity matrix made from Maxwell equations, data collection method, domain geometry ...

Major issue: How to convert the ill-posed problem to a well-posed one?

Reconstruction of σ (conductivity) / ϵ (permittivity)

To evaluate them, we must produce **electrical current density** J & **electric field** E inside the imaging domain Ω .

Inject current (dc / ac)



Induce current (ac only)

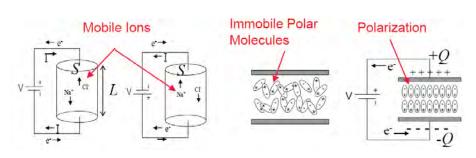
$$\nabla \cdot (\gamma \nabla u) = 0$$

$$-\nabla^2\mathbf{H} = \nabla \ln \gamma \times \nabla \times \mathbf{H} - i\mu_0\omega\gamma\mathbf{H}$$

- E $\approx -\nabla u$ (u :=electric potential), H (magnetic field), $\gamma = \sigma + i\omega\epsilon$ (admittivity)
- Using this with measurable data, we develop a system SX = b.

Electrical conductivity σ & permittivity ϵ

• Electrical tissue properties include electrical conductivity σ & electrical permittivity ϵ .

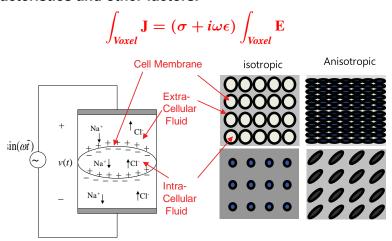


$$J = \sigma E$$

$$J = i\omega \epsilon E$$

Cell Structure in Tissues & Effective $\gamma = \sigma + i\omega\epsilon$

 $\gamma = \sigma + i\omega\epsilon$ of a biological tissue under the influence of a time-harmonic electric field E at ω , is determined by its ion concentrations in extra- and intracellular fluids, membrane characteristics and other factors.



Electrical Tissue Property Imaging

Biological tissues and organs exhibit distinct electrical properties depending on their physiological functions and pathological states

• Low frequency (0 Hz $\leq \omega/2\pi \leq$ 1MHz):

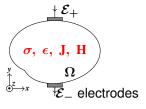
$$abla \cdot (\underbrace{(\sigma + i\omega\epsilon)}_{ ext{conductivity} + i\omega ext{permittivity}}
abla u) = 0$$

• Frequency (10 MHz $\leq \omega/2\pi \leq$ 1GHz):

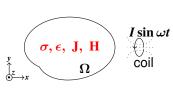
$$-
abla^2 \mathrm{H} = rac{
abla(\sigma + i\omega\epsilon)}{\sigma + i\omega\epsilon} imes
abla imes \mathrm{H} - i\mu_0\omega(\sigma + i\omega\epsilon) \mathrm{H}$$

About Data. What is measurable?

Inject current (dc / ac)



Induce current (ac only)

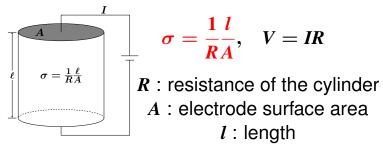


$$abla \cdot (\gamma \nabla u) \approx 0 \quad \& \quad -\nabla^2 \mathbf{H} = \nabla \ln \gamma \times (\nabla \times \mathbf{H}) - i\omega \mu \gamma \mathbf{H}$$

- EIT ($\leq 1MHz$): Boundary voltage $u|_{\partial\Omega}$ using electrodes.
- **MREIT** ($\leq 1kHz$): Internal H_z using MRI
- MIT ($\leq 10MHz$): External magnetic field using coils
- MREPT (128 MH_Z at 3T MRI): Internal $H^+=rac{1}{2}(H_x+iH_y)$

Compute σ using $\nabla u \parallel (0,0,1)$

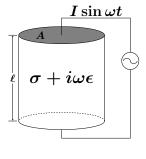
To compute σ of a cylindrical object Ω by Ohm's law, we inject a DC current of *ImA* between top and bottom surface electrodes, and measure the voltage difference V between the electrodes.



Here, V is $V = u|_{top} - u|_{bottom}$, where u is the potential generated by the injection current:

$$\left\{ \begin{array}{ll} \nabla \cdot (\sigma \nabla u) & = & 0 \quad \text{in } \Omega \\ \sigma \frac{\partial u}{\partial \nu} \Big|_{\partial \Omega} & = & \frac{I(mA)}{A(\textit{area})} \left(\chi_{\text{top}} - \chi_{\text{bottom}} \right) \\ \end{array} \right.$$

Compute $\sigma + i\omega\epsilon$ using $\nabla u \parallel (0,0,1)$



The admittivity γ is computed by

$$\gamma = \sigma + i\omega\epsilon = rac{1}{Z}rac{\ell}{A}$$
• $Z = V/I$: impedance.

- ε permittivity

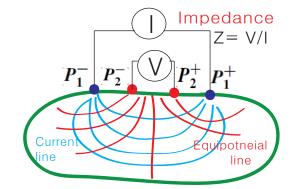
$$V = u|_{top} - u|_{bottom}$$
 where u satisfies

$$\begin{cases} \nabla \cdot (\gamma \nabla u) = 0 & \text{in } \Omega \\ \gamma \frac{\partial u}{\partial \nu} \big|_{\partial \Omega} = I/A \left(\chi_{\text{top}} - \chi_{\text{bottom}} \right) \end{cases}$$

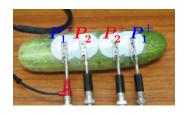
How to measure γ for non-cylindrical domain Ω ?

We cannot control ∇u unlike CT & MRI! It is determined by the geometry Ω & the current driving electrodes (P_1^+, P_1^-) .

$$\nabla \cdot (\gamma \nabla u^1) = \mathbf{0} \text{ in } \Omega, \quad \gamma \frac{\partial u^1}{\partial \nu}|_{\partial \Omega} = I[\delta(P_1^+ - \cdot) - \delta(P_1^- - \cdot)]$$



Math. Formula for Computing $\gamma = \sigma + i\omega\epsilon$



Let
$$u^j$$
 $(j=1,2)$ satisfy
$$\begin{cases} \nabla \cdot (\gamma \nabla u^j) = 0 \ \text{in } \Omega \\ \gamma \frac{\partial u^j}{\partial \nu}|_{\partial \Omega} = g_j \end{cases}$$
 $\dagger \ g_j := I(\delta(P_j^+ - \cdot) - \delta(P_j^- - \cdot))$

$$\gamma = \underbrace{\left[{\color{red} u^1(P_2^+) - u^1(P_2^-)} \right]/I}_{{\color{blue} Z^{1,2}} \text{ (measurable quantity)}} \underbrace{\left(\int_{\Omega}
abla u^1 \cdot
abla u^2 dx
ight)^{-1}}_{ ext{to be computed}}$$

- How to compute $\int_{\Omega} \nabla u^1 \cdot \nabla u^2 dx$?
- Impedance $Z^{1,2}$ depends mainly on electrode positions (P_1^{\pm}, P_2^{\pm}) & the geometry of Ω . Why? How?
- γ changes with ω . Why? How?

Use Neumann function N_{Ω} to measure γ

The relation between impedance Z & impedivity γ^{-1} is influenced by the geometry $\partial\Omega$ & electrode positions P_j^{\pm} .

$$\gamma = \frac{1}{u^1(P_2^\pm)} \int_{\partial\Omega} N_\Omega(P_2^\pm, y) g_1(y) ds_y$$

$$\gamma = \frac{1}{u^1(P_2^\pm)} \int_{\partial\Omega} N_\Omega(P_2^\pm, y) ds_y ds_y$$

$$\gamma = \frac{1}{u^1(P_2^\pm)} \int_{\partial\Omega} N_\Omega(P_2^\pm, y) ds_y ds_y ds_y ds_y ds_y ds_y d$$

Neumann function N_{Ω} depends sensitively on the geometry $\partial \Omega$:

$$\mathcal{S}(-\frac{1}{2}I+\mathcal{K}^*)^{-1}=I \ \leadsto \ N_{\Omega}=(-\frac{1}{2}I+\mathcal{K})^{-1}\Phi$$

$$st \Phi(\mathbf{x}, \mathbf{y}) := rac{1}{4\pi |\mathbf{x} - \mathbf{y}|}, \quad \mathcal{S}f(\mathbf{x}) := \int_{\partial \Omega} \Phi(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) ds_{\mathbf{y}}, \\ st \mathcal{K} : L^2(\partial \Omega) o L^2(\partial \Omega) ext{ defined by } \mathcal{K}f(\mathbf{x}) := \int_{\partial \Omega} rac{\partial}{\partial \nu_{\mathbf{y}}} \Phi(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) ds_{\mathbf{y}}$$

Both $\sigma=\Re\{\gamma\}$ and $\epsilon=\Im\{\gamma/\omega\}$ in $\nabla(\gamma\nabla u)=0$ change with ω because of non-conducting cell membrane.

$$\gamma = cI/V$$
 $\sigma = c\Re\{I/V\}$
 $\epsilon = c\frac{1}{\omega}\Im\{I/V\}$

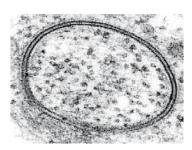
- c depends on the geometry $\partial\Omega$ and electrode positions.
- Low frequency currents are blocked by the nonconducting membrane so it pass through extras cellular fluid. High frequency currents pass through the membranes. Why?
 - $\sqrt{\frac{\gamma|_{membrane}}{\gamma|_{background}}} \approx 0$ at 10 Hz, whereas $\left|\frac{\gamma|_{membrane}}{\gamma|_{background}}\right| \gtrsim 0$ at 100MHz.

ω -dependent effective γ can be estimated by the use of double layer (membrane) potential via homogenization.

 ω -dependent effective γ is expressed as

$$egin{aligned} oldsymbol{\gamma}_{ ext{(effective)}} &= \left[\gamma_{ij}
ight] = \ \gamma_0 \left[\delta_{ij} - rac{\gamma_0 d}{\gamma_m} \int_{\Gamma}
u_j (I + rac{\gamma_0 d}{\gamma_m} \mathcal{T})^{-1}
u_i ds
ight] \ \mathcal{T}[\phi] &= rac{\partial}{\partial
u} \int_{\Gamma} rac{\partial}{\partial
u_y} \underbrace{G(\cdot - y)}_{\bullet} \phi(y) ds_y \end{aligned}$$

[Ammari, Garnier, Giovangigli, Jing, Seo, Spectroscopic imaging of a dilute cell suspension, JEMS 2015]



$$ullet rac{\gamma_0 d}{\gamma_m} = rac{\sigma_0 d}{\sigma_m} \gg 0$$
 at $\omega = 0$ $ightharpoonup anisotropic $\gamma$$

$$ullet rac{\gamma_0 d}{\gamma_m} = rac{d(\sigma_0 + i\omega\epsilon_0)}{\sigma_m + i\omega\epsilon_m} pprox 0 ext{ at } \omega = 10^8 \
ightarrow ext{ isotropic } \gamma$$

- Γ:=membrane surface
- d :=thickness of membrane

•
$$\gamma_m := \gamma|_{membrane}, \gamma_0 := \gamma|_{background}$$

Human Experiments with Multiple Electrodes

Admittivity $\gamma := \sigma + i\omega\epsilon$ & potential u are connected by

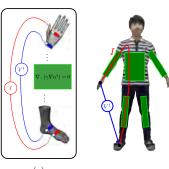
$$abla \cdot (\gamma
abla u \) = 0 \,\,$$
 in a human body Ω

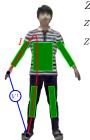
- Effective impedivity γ^{-1} (3×3 matrix) depends on scale and ω .
- Impedance $Z^{j,k}$ (measurable quantity; see the figure below) is the ratio between j—th current (injected by j-th pair of electrodes) and the induced potential difference between the k-th pair:

$$\mathbf{Z}^{j,k} = rac{V^{j,k}}{I} = rac{1}{I^2} \int_{\Omega} \gamma \nabla u^j \cdot \nabla u^k d\mathbf{x}$$

Meausure Dirichlet data k-th pair of electrodes

Body Impedance Measurement (Not Tomography)





$$\begin{split} Z_{\text{body}}^1 &\approx \frac{(Z^1 + Z^2) - (Z^3 + Z^4)}{2} \\ Z^j &= \frac{V^j}{I} = \frac{1}{I^2} \int_{\Omega} \frac{1}{\gamma} \left| \gamma \nabla u^j \right|^2 d\mathbf{x} : \text{measurable} \\ Z^1 &\approx \frac{1}{I^2} \int_{\Omega_{\text{ra}}} \frac{1}{\gamma} \left| \gamma \nabla u^1 \right|^2 d\mathbf{x} + \frac{1}{I^2} \int_{\Omega_{\text{body}}} \frac{1}{\gamma} \left| \gamma \nabla u^1 \right|^2 d\mathbf{x} \\ &+ \frac{1}{I^2} \int_{\Omega_{\text{rl}}} \frac{1}{\gamma} \left| \gamma \nabla u^1 \right|^2 d\mathbf{x} \end{split}$$

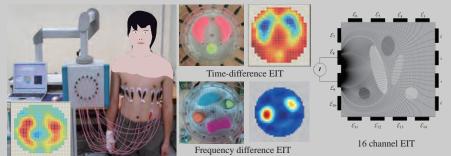
Human body Ω can be decomposed into five parts. The commercial system (InBody) calculates the volume of the body water by

$$rac{1}{I^2} \int_{\Omega_{hods}} \gamma |
abla u^1|^2 dx = rac{1}{2} (Z^1 + Z^2 - Z^3 - Z^4)$$

Eliminate contributions of legs and arms

This method reduces electrode position uncertainties! Why?

Electrical Impedance Tomography - 16 channel EIT



u^{j} :=potential due to *j*-th injection current:

$$\begin{cases} \nabla \cdot (\gamma \nabla u^j) = 0 & \text{in } \Omega \\ (u + z_k \gamma \frac{\partial u}{\partial \mathbf{n}}) | \varepsilon_k = U_k, \quad k = 1, \cdots, E \\ \gamma \frac{\partial u^j}{\partial \mathbf{n}} = 0 & \text{on } \partial \Omega \setminus \bigcup_{k=1}^{16} \mathcal{E}_k \\ \int_{\mathcal{E}_k} \gamma \frac{\partial u}{\partial \mathbf{n}} = 0 & \text{if } k \neq j, j+1 \\ \int_{\mathcal{E}_j} \gamma \frac{\partial u^j}{\partial \mathbf{n}} \, ds = I = -\int_{\mathcal{E}_{j+1}} \gamma \frac{\partial u^j}{\partial \mathbf{n}} \, ds \end{cases}$$

where z_k is the contact impedance of the kth electrode \mathcal{E}_k and U_k is the voltage on \mathcal{E}_k .

Measured EIT data is

$$\mathbb{F} = \left[V^{1,1}, \cdots, V^{1,16}, \cdots, V^{j,k}, \cdots, \cdots \right]^T$$

where

$$V^{j,k} := U^j_k - U^j_{k+1}$$

History of EIT

- Henderson and Webster (1978): EIT by designing the impedance camera.
- Calderón (1980): Mathematical inverse problem to identify σ entering $\nabla \cdot (\sigma \nabla u) = 0$ in a domain Ω from the knowledge of NtD map.
- Barber and Brown (1982) developed an EIT version of the CT back-projection algorithm. The first EIT device (Sheffield Mark 1) with one active current source.
- Isaacson (1986) suggested the concept of distinguishability.
 RPI group developed EIT system with multiple active current sources to maximize the distinguishability.
- Dräger and Swisstom (2010-) developed commercial EIT systems for visualizing the regional distribution of ventilation in the lungs continuously, without radiation, and directly at the patients bedside.

Electrical Impedance Tomography

Reconstruct $\gamma = \sigma + i\omega\epsilon$ at each ω and time t. If it is too difficult, reconstruct its changes:

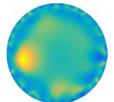
$$\frac{\partial}{\partial t} \gamma \ \& \ \frac{\partial}{\partial \omega} \gamma$$

* Note that σ and ϵ depend on position \mathbf{x} , ω , and t.

Measured Data:
$$\mathbf{Z}^{j,k} = \frac{V^{j,k}}{I} = \frac{1}{I^2} \int_{\Omega} \gamma \nabla u^j \cdot \nabla u^k d\mathbf{x}, \ (\forall |j-k| > 1)$$

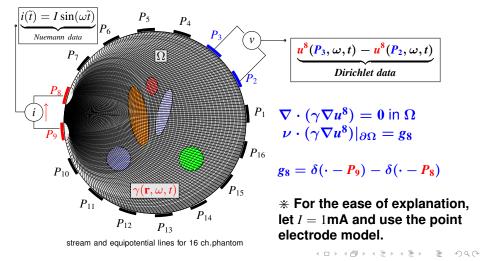
$\frac{\partial}{\partial t}\gamma$ Time-difference EIT

$\frac{\partial}{\partial \omega} \gamma$ Frequency-difference EIT



Reciprocity Principle: $Z^{j,k} = Z^{k,j}$.

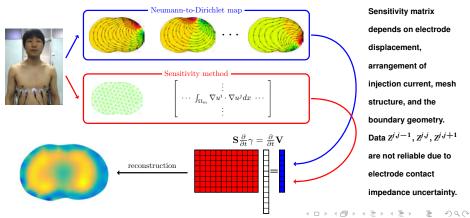
$$\underbrace{u^8(P_3,\omega,t)-u^8(P_2,\omega,t)}_{Z^{8,2}\leftarrow\text{measured data}} = \int_{\Omega} \gamma \nabla u^8 \cdot \nabla u^2 dr = \underbrace{u^2(P_9,\omega,t)-u^2(P_8,\omega,t)}_{Z^{2,8}\leftarrow\text{measured data}}$$



EIT Reconstruction Algorithm

tdEIT aims to reconstruct $\frac{\partial}{\partial t} \gamma$ from $\frac{d}{dt} \mathbf{Z}^{j,k}$ & the relation

$$\underbrace{\frac{d}{dt}Z^{j,k}}_{\frac{d}{dt}V^{j,k}} \approx \int_{\Omega} \frac{\partial \gamma}{\partial t} \nabla u^{j} \cdot \nabla u^{k} dx \approx \underbrace{\sum_{m} \int_{\Omega_{m}} \frac{\partial \gamma}{\partial t} \nabla u^{j} \cdot \nabla u^{k} dx}_{\mathsf{N}(j-1) + \mathsf{k}\text{-component of } \mathsf{S} \frac{\partial \gamma}{\partial t}}$$

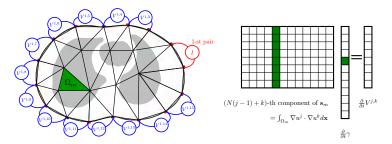


Sensitivity matrix depends on electrode displacement. arrangement of injection current, mesh structure, and the boundary geometry. Data $Z^{j,j-1}$, $Z^{j,j}$, $Z^{j,j+1}$ are not reliable due to electrode contact impedance uncertainty.

EIT: Linearized Method

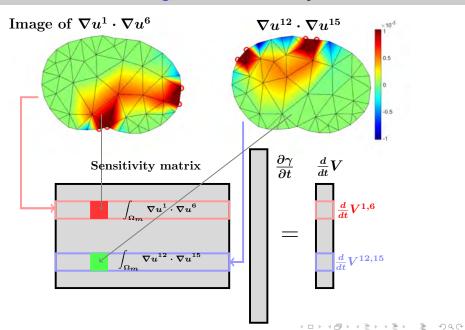
$$\underbrace{\frac{d}{dt}V^{j,k}}_{\mathcal{O}} \approx \int_{\Omega} \frac{\partial}{\partial t} \gamma \nabla u^{j} \cdot \nabla u^{k} dx \approx \sum_{m} \underbrace{\int_{\Omega_{m}} \nabla u_{0}^{j} \cdot \nabla u_{0}^{k} dx}_{\partial t} \frac{\partial}{\partial t} \gamma|_{\Omega_{m}}$$

Find a suitable linear combination of column vectors $(s_{N(j-1)+k,1}), \cdots, (s_{N(j-1)+k,1})$ which matches with the data $\frac{d}{dt}(V^{1,1}, \cdots, V^{N,N})$.



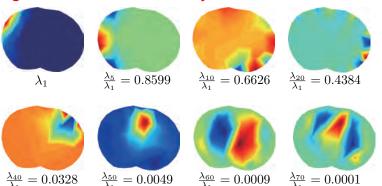
* Inclusion detection of recovering $\cup \{\Omega_m: \frac{d}{dt}\gamma_m \neq 0\}$ is linear..... [Harrach/S, SIAMA 2010]

Positive, Zero, Negative Sensitivity



Static EIT is severely ill-posed.

EIT data V depends mainly on the boundary geometry and the electrode positions, whereas its dependence on a local perturbation of γ is relatively small. See the structure of eigenvectors of EIT Sensitivity matrix.



Lung EIT to monitor $\frac{\partial \gamma}{\partial t}$ from $\frac{d}{dt}V^{j,k}$

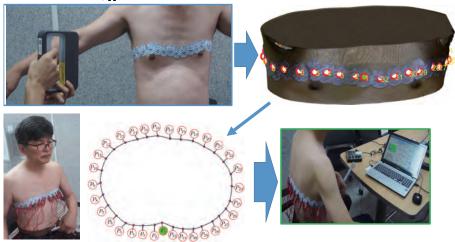
EIT has its unique ability to allow long-term, continuous monitoring of lung ventilation at the bedside. Lung EIT aims to provide dynamic images of $\frac{\partial \gamma}{\partial t}$ from

$$\frac{d}{dt}V^{j,k} pprox \int_{\Omega} \frac{\partial \gamma}{\partial t} \nabla u^j \cdot \nabla u^k d\mathbf{x}, \quad \forall |j-k| > 1$$

Swisstom: BB2

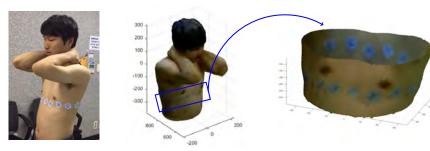
Get Ω & electrode positions.

It is important to match Ω to the patient's geometry, in order to use the relation $V^{j,k} = \int_{\Omega} \gamma \nabla u^j \cdot \nabla u^k dx$ effectively.



Reduce the forward modeling errors.

Thanks to rapid development of 3D scanning, we have a chance to alleviate the forward modelling error including electrode position P_j and boundary geometry $\partial\Omega$. We cannot deal with the uncertainty of the reference conductivity distribution γ_0 .



Barber and Brown's observation: If electrodes are spaced 10 cm apart around the thorax, variation in positioning of 1 mm will produce errors of 1% in the data V.

Combine spatial and temporal regularization to deal with the ill-posed nature.

Enforcing the temporal monotonic constraint on lung ventilation-related conductivity change, the corresponding inverse problem becomes better posed.

• Decompose $\frac{\partial}{\partial t}\sigma$ into ventilation and parts

$$\frac{\partial}{\partial t}\sigma^t(x) = \underbrace{\frac{\partial}{\partial t}\sigma_L}_{\text{ventilation}} + \underbrace{\frac{\partial}{\partial t}\sigma_H}_{\text{others}} \quad x \in \Omega.$$

Use a band-pass filter to extract the ventilation-related signal :

$$\frac{d}{dt}V_L^{j,k}(t) \approx -\int_{\Omega} \frac{\partial \sigma_L^t}{\partial t} \nabla u^j \cdot \nabla u^k dx$$

[Liangdong Zhou & Bastian Harrach, Seo; Monotonicity-based Electrical Impedance Tomography Lung Imaging(2015)]

Monotonic assumption on the ventilation-related conductivity variation

Under this assumption, the ventilation-related data \mathbb{V}_L (N-channel EIT system) is **either positive or negative semidefinite** matrix:

$$\mathbb{V}_L(t) = \left[egin{array}{cccc} V_L^{1,1}(t) & \cdots & V_L^{1,N}(t) \ V_L^{2,1}(t) & \cdots & V_L^{2,N}(t) \ dots & \ddots & dots \ V_L^{N,1}(t) & \cdots & V_L^{N,N}(t) \end{array}
ight].$$

To determine whether the matrix $\frac{d}{dt}V_L(t)$ is positive or negative semi-definite, we use the formula:

$$\mathbf{a}^{T} \frac{d}{dt} \mathbb{V}_{L}(t) \mathbf{a} = - \int_{\Omega} \frac{\partial \sigma_{L}}{\partial t} \nabla \left(\sum_{j} a_{j} u^{j} \right) \cdot \nabla \left(\sum_{k} a_{k} u^{k} \right) dx$$

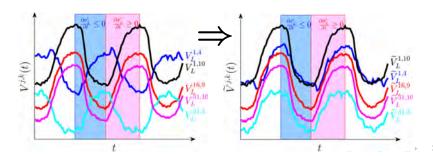
for all $\mathbf{a}=(a_1,\cdots,a_N)^T\in\mathbb{R}^N$.

Remarkable EIT data pattern in human experiments

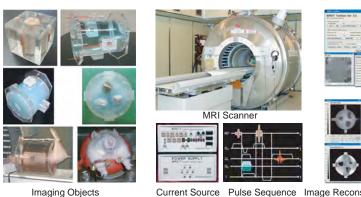
- $\inf_{x \in \Omega} \frac{\partial \sigma_L}{\partial t}(x) \ge 0 \implies \frac{d}{dt} \mathbb{V}_L \lessapprox 0$ (positive-semidefinite)
- $\sup_{x \in \Omega} \frac{\partial \sigma_L}{\partial t}(x) \leq 0 \implies \frac{d}{dt} \mathbb{V}_L \succsim 0$ (negative-semidefinite)

Observation: $\widetilde{V}^{j,k}(t)$ have a similar time-varying pattern:

$$\widetilde{V}^{j,k}(t) := rac{V^{j,k}(t)}{ ext{sign}\Big(\int_{\Omega}
abla u^j \cdot
abla u^k\Big)} + \Big(1 - ext{sign}\Big(\int_{\Omega}
abla u^j \cdot
abla u^k\Big)\Big) ext{ave}V^{j,k}$$



MREIT for recovering σ

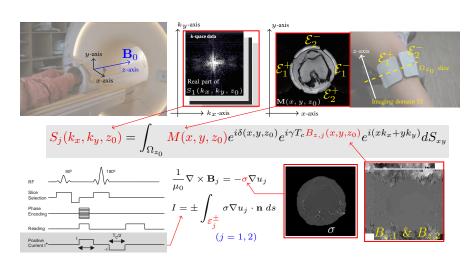


Current Source Pulse Sequence Image Reconstruction Software

MREIT aims to provide σ using MRI. EIT data is insufficient to provide σ .

MREIT Math. Model

When modeling, we must take account of **well-posedness** (Uniqueness, Existence, Stability).



MREIT aims to visualize σ .

• Both EIT and MREIT use a pair of electrodes \mathcal{E}^+ and \mathcal{E}^- to produces $\mathbf{J}=(J_x,J_y,J_z)$ and $\mathbf{B}=(B_x,B_y,B_z)$. The relation among $\sigma,\mathbf{J},\mathbf{B}$ is

$$-\sigma \nabla u = \mathbf{J} = \frac{1}{\mu_0} \nabla \times \mathbf{B}$$

- EIT vs MREIT:
 - EIT uses electrodes to get boundary measurements.
 - MREIT uses MRI to get the internal data B_z , z-component of $\mathbf{B} = (B_x, B_y, B_z)$.

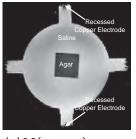
How to measure B_z . (1989, Joy et al, Toronto Group)

MRI scanner can provide the complex k-space MR signal $S(k_x, k_y)$ involving B_z on the slice $\Omega_{z_0} = \Omega \cap \{z = z_0\}$:

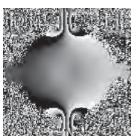
$$S(k_x, k_y) = \int \int_{\Omega_{z_0}} M(x, y, z_0) e^{i(\eta B_z(x, y, z_0)T_c + \delta(x, y, z_0))} e^{i(xk_x + yk_y)} dxdy$$

Fourier transform of $S(k_x, k_y) \sim$

$$\mathcal{M}(x,y,z_0):=M(x,y,z_0)\ e^{i\eta B_z(x,y,z_0)T_c}\ e^{i\delta(x,y,z_0)}.$$



(a) $M(x,y,z_0)$



(b)wrapped B_z

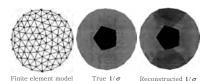
(c) B_z

MREIT using full components of H:

Major drawback: It requires subject rotation inside MRI scanner.

Least square method [Zhang 1992]

$$\min_{\sigma} \frac{1}{2} \| \nabla \times \mathbf{H} + \sigma \nabla u \|^2$$

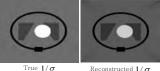


Low spatial resolution

[Woo, Lee, Moon 1994], [Idel and Birgul 1995]

 J-substitution method [Kwon, Seo, Yoon, Woo 2001]

$$\nabla \cdot \left(\frac{|\mathbf{J}|}{|\nabla u|} \nabla u \right) = 0$$



rue 1/σ Reconstr

High spatial resolution

In 2005-present, CDII by Nachman, Tamasan, Timonov, Joy

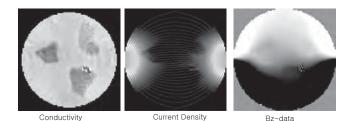
Inverse Problem of MREIT

Recover σ from the B_z data as a function of σ and Neumann data g:

$$\Lambda_{\sigma}(g)(\mathbf{r}) := \frac{\mu_0}{4\pi} \int_{\Omega} \frac{\sigma(\mathbf{r}') \left[(x - x') \frac{\partial u}{\partial y}(\mathbf{r}') - (y - y') \frac{\partial u}{\partial x}(\mathbf{r}') \right]}{|\mathbf{r} - \mathbf{r}'|^3} d\mathbf{r}'$$

where u satisfies

$$\left\{ \begin{array}{ll} \nabla \cdot ({\color{red}\sigma} \nabla u) = 0 & \text{in} \quad \Omega \\ \sigma \frac{\partial u}{\partial \nu}|_{\partial \Omega} = {\color{red}g} \end{array} \right.$$



Relation between σ and $\Lambda_{\sigma}(g) = B_z$

• From Ampere's law $J = \frac{1}{\mu_0} \nabla \times B$,

$$\mu_0
abla imes \mathbf{J} =
abla imes
abla imes \mathbf{B} = -
abla^2 \mathbf{B} +
abla \underbrace{
abla \cdot \mathbf{B}}_{=0} = -
abla^2 \mathbf{B}$$

• Denoting $\hat{\mathbf{z}} = (0, 0, 1)$,

$$rac{1}{\mu_0}
abla^2 B_z = \hat{\mathbf{z}} \cdot
abla \sigma imes
abla u = \mathbf{d} \cdot
abla \sigma \qquad (\mathbf{d}(\mathbf{r}) := \hat{\mathbf{z}} imes
abla u(\mathbf{r}))$$

- If B_z is convex at r, then $\sigma(r) \nearrow \text{in } d(r)$ -direction.
- If B_z is concave at r, then $\sigma(r) \searrow \text{in } d(r)$ -direction.
- If $\nabla^2 B_z(\mathbf{r}) = 0$, then $\sigma(\mathbf{r})$ does not change in $d(\mathbf{r})$ -direction.

Key observation

 $\checkmark B_z$ is blind to $\nabla_{xy}u \cdot \nabla_{xy}\sigma$.

Non-uniqueness theorem

For a given $g \in H^{-1/2}(\partial\Omega)$ and a conductivity σ , \exists infinitely many $\tilde{\sigma}$ such that

$$\Lambda_{ ilde{\sigma}}[g] = \Lambda_{\sigma}[g]$$
 in Ω

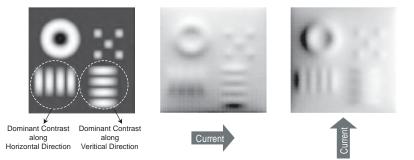
 σ (left) and $\tilde{\sigma}$ (right) produce the same $\textbf{\textit{B}}_z.$

Here, $\tilde{\sigma} := \frac{\sigma}{\phi'(u)}$ with ϕ being an increasing function.

$abla^2 B_z$ data can trace a change of σ in the direction $abla u imes \hat{\mathbf{z}}$

For uniqueness, we need two linearly independent injection currents.

$$\nabla^2 B_{z,j} = \nabla \ln \sigma \cdot (\sigma \nabla u_j \times \hat{\mathbf{z}}) \qquad (j = 1, 2)$$

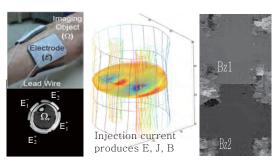


Use four electrodes to produce $B_{z,1} \& B_{z,2}$:

$$B_{z,j}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_{\Omega} \frac{\sigma(\mathbf{r}') \ \hat{\mathbf{z}} \cdot [(\mathbf{r} - \mathbf{r}') \times \nabla u_j(\mathbf{r}')]}{|\mathbf{r} - \mathbf{r}'|^3} d\mathbf{r}' \qquad (j = 1, 2)$$

where u_i satisfies

$$\begin{cases} \nabla \cdot (\sigma \nabla u_j[\sigma]) = \mathbf{0} & \text{in } \Omega, \\ I = \int_{\mathcal{E}_j^+} \sigma \frac{\partial u_j[\sigma]}{\partial \mathbf{n}} ds = -\int_{\mathcal{E}_j^-} \sigma \frac{\partial u_j[\sigma]}{\partial \mathbf{n}} ds, \\ \nabla u_j[\sigma] \times \mathbf{n}|_{\mathcal{E}_j^+ \cup \mathcal{E}_j^-} = \mathbf{0}, \quad \sigma \frac{\partial u_j[\sigma]}{\partial \mathbf{n}} = \mathbf{0} & \text{on } \partial \Omega \setminus \overline{\mathcal{E}_j^+ \cup \mathcal{E}_j^-} \end{cases}$$

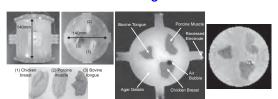


Harmonic B_z -algorithm [2002; Seo, Kwon, Yoon, Woo]

 σ is reconstructed by only B_z :

$$egin{aligned}
abla_{\mathsf{x}\mathsf{y}}^2 \ln \sigma &=
abla_{\mathsf{x}\mathsf{y}} \cdot \left(\mathbf{A}^\dagger \left[egin{array}{c}
abla^2 B_{z,1} \\
abla^2 B_{z,2}
egrid
egrid \end{aligned}
ight]
ight) \ & ext{where} \quad \mathbf{A}^\dagger := rac{1}{\mu_0} \left[egin{array}{c} \sigma rac{\partial u_1[\sigma]}{\partial y} & -\sigma rac{\partial u_1[\sigma]}{\partial x} \\ \sigma rac{\partial u_2[\sigma]}{\partial y} & -\sigma rac{\partial u_2[\sigma]}{\partial x}
egrid
egrid$$

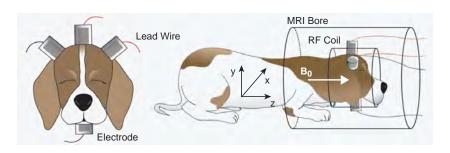
This formula exists in an implicit form owing to the nonlinear relationship between σ and B_z , but it was designed to use a fixed-point theory. The major drawback of EIT, ill-posedness is mainly due to the fact that the overall flow of J is insensitive to local perturbations in σ . However, the harmonic Bz method takes advantage of this fact to make the algorithm work.



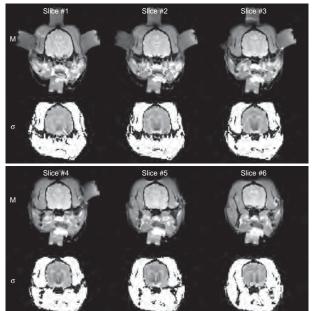
MREIT: Animal imaging experiment

Harmonic B_z -algorithm requires to solve the forward model in which we need to know Ω and Neumann data (semi-)automatically.

- **Domain** Ω : We use **segmentation methods** to extract $\partial\Omega$ from MR-image automatically.
- Neumann boundary data: Use semi-automatic algorithm to get Neumann condition.

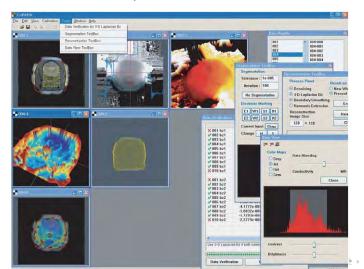


MREIT: Animal σ -imaging

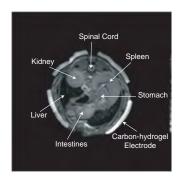


CoReHa: Software for MREIT

MREIT Matlab Toolkit(2006: CJ Park, SH Lee, Kwon, Woo, Seo), CoReHA(Conductivity Reconstructor using Harmonic Algorithm 2008: GW Jun, CO Lee, Woo, Seo)

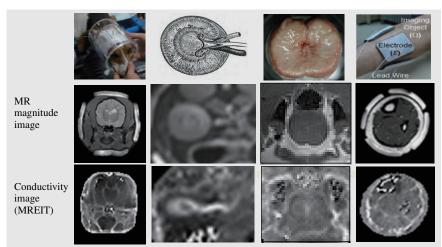


MREIT: Animal imaging



MREIT Images

MREIT is the most advanced conductivity imaging technique and now can offer state-of-the-art conductivity imaging for animal and human experiments.

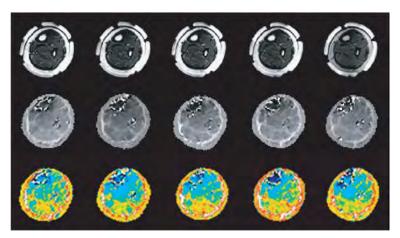


Challenging issues in year 2000: Proposal for MREIT research

- Reconstruct conductivity using only Bz: Solved ✓
- High resolution Image: Solved with 5mA √
- Anisotropic conductivity imaging: Solved mathematically but not feasible. Need fundamental studies.
- Animal Experiment: Solved ✓
- Human experiment: Partially Solved (Legs is OK but far from OK for brain.)
- Accuracy analysis: Partially Solved ✓ We made many conjectures (99.99% sure). See SIAM Review 2011 and PM (review 2008).

Challenging issue in MREIT for Human imaging.

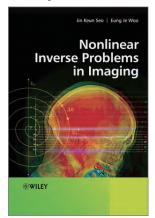
 FDA safety limit: 1mA. Reducing the amount of current ⇒ Low SNR data ⇒ Reconstruction errors and artifacts. We need to handle noise.



Year 2015: New Challenges in MREIT

- High resolution Image with 1mA
 - Low SNR: Denoising, regularization, PDE-based image restoration
 - Sensitivity enhancement by improvements in RF coil and pulse sequence
- Functional imaging
 - Fast imaging method: Parallel Imaging, Reduced FOV and ROI imaging
 - Sparse Sensing or Compressed Sensing (skipped K-space)
 - Statistical image analysis
- Visual understanding effective conductivity
- Dual Frequency Imaging: MREIT & MREPT

Thank you.



We focus on **experimental** mathematics. We develop mathematical theory in such a way that it can guide experiment on what to look for. Modeling/Analysis⇔Numerical Simulation⇔Experiment