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Partial Differential Equations (PDEs)

• Mathematical techniques in science and engineering have evolved to 
expand our ability to visualize various physical phenomena of interest 
and their characteristics in detail. 

• A large variety of natural phenomena occurring in real-life applications 
from fluid flows to biology and medical imaging fields are described 
by means of PDEs.

• Finding solutions with practical significance and value requires an in-
depth understanding of the underlying physical phenomena with data 
acquisition systems as well as the implementation details of 
algorithms. 



Laplace Equation

Laplace equation 
𝝏𝟐

𝝏𝒙𝟐
𝝏𝟐

𝝏𝒚𝟐
𝝏𝟐

𝝏𝒛𝟐 where 𝒖 ൌ

𝒖ሺ𝒙, 𝒚, 𝒛ሻ is the potential at position 𝒙, 𝒚, 𝒛 .



Heat equation

Heat equation 
𝝏
𝝏𝒕

where 𝒖 ൌ 𝒖ሺ𝒙, 𝒚, 𝒛, 𝒕ሻ is the 

temperature at position 𝒙, 𝒚, 𝒛 and time 𝒕.

Animated plot of the evolution of the temperature in a square metal plate as 
predicted by the heat equation. The height and redness indicate the 
temperature at each point.

Image credit: Wikipedia



Helmholtz equation where 𝒖 ൌ 𝒖ሺ𝒙, 𝒚, 𝒛ሻ is the 
pressure  at position 𝒙, 𝒚, 𝒛 .

Helmholtz equation 

Image credit: Samsung HS60



Wave equation

Wave equation 
𝝏𝟐

𝝏𝒕𝟐 where 𝒖 ൌ 𝒖ሺ𝒙, 𝒚, 𝒛, 𝒕ሻ is the 

displacement at position 𝒙, 𝒚, 𝒛 and time 𝒕.

Image credit: Wikipedia



Maxwell’s equations in 
electromagnetism

• Faraday’s law of induction: 𝛁 ൈ 𝑬 ൌ െ 𝝏
𝝏𝒕

𝑩

• Ampere’s circuital law: 𝛁 ൈ 𝑯 ൌ 𝑱 ൅ 𝝏
𝝏𝒕

𝑫
• Gauss’s Law for magnetism: 𝛁 ⋅ 𝑩 ൌ 𝟎
• Gauss’s Law : 𝛁 ⋅ 𝑬 ൌ 𝝆/𝝐

Image credit: Wikipedia



Elastic equation

Linear elasticity equation 
𝝏𝟐

𝝏𝒕𝟐
where 𝒖 ൌ 𝒖ሺ𝒙, 𝒚, 𝒛, 𝒕ሻ is the displacement at position 𝒙, 𝒚, 𝒛 and 
time 𝒕.



Navier-Stokes Equation in Fluid Mechanics 

𝟐

Eulerian
acceleration

Pressure 
gradient 

advection Other body forceViscosity

Inertia per volume

Divergence of stress



Hadamard (born in 1865) believed that 
mathematical models must satisfy three properties: 

existence, uniqueness, and stability.

Linear system

𝑨𝒙 ൌ 𝒃 is well-posed if the following three conditions hold:
• [Existence] for each b, there exist at least one possible solution of 

𝑨𝒙 ൌ 𝒃;
• [Uniqueness] for each b, 𝑨𝒙 ൌ 𝒃 has a unique solution;
• [Stability] the solution is stable under perturbation of 𝒃.





𝑢 𝑥, 𝑦 ൎ 𝑢௜௝

𝑢
ଵଵ ଵ௡

௠ଵ ௠௡
=

white-255
black-0

Understanding PDEs using 2D images as examples

𝑦

𝑥

• A function 𝒖ሺ𝒙, 𝒚ሻ of two variables 𝒙, 𝒚 can be represented as a grayscale image.
• The grayscale image is represented as a matrix ሺ𝒖𝒊𝒋 ሻ, with each element corresponding to 

one image pixel. 

Each pixel is assigned a 
value of grayscale level 
between 0 and 255



𝝏𝒖
𝝏𝒙

𝝏𝒖
𝝏𝒚

This image 𝒖 𝒙, 𝒚 ൎ 𝒖𝒊𝒋 can be viewed 
as a solution of Poisson’s equation 

𝟐

Poisson’s equation

𝝆 ൌ 𝛁𝟐𝒖

The sparse data 𝝆 contains almost the 
full information of the image 𝒖 .



Wave equation
This image 𝒖 𝒙, 𝒚 ൎ 𝒖𝒊𝒋 can be viewed as a solution of the wave equation

𝟐
𝝏𝒖
𝝏𝒙 ൅ 𝟑

𝝏𝒖
𝝏𝒚 ൌ 𝝓   𝐢𝐧   𝛀

with the initial condition 𝑢 𝑥, 0 ൌ 𝑓ଵ 𝑥 ,   𝑢 0, 𝑦 ൌ 𝑓ଶ 𝑦 for 0 ൏ 𝑥, 𝑦 ൏ 𝐿. Here, 𝜙 is plotted at the right side 
of figure and the initial data is the boundary intensity of the image 𝑢 on the left.

𝒖 𝛁𝒖 𝝓



Heat equation

The convolution 𝒘 𝒙, 𝒚, 𝒕 ൌ 𝐆𝐭 ∗ 𝐮ሺ𝐱, 𝐲ሻ
satisfies the heat equation

𝝏
𝝏𝒕 െ 𝜵𝟐 𝒘 𝒙, 𝒚, 𝒕 ൌ 𝟎

with the initial condition

𝒘 𝒙, 𝒚, 𝟎 ൌ 𝐥𝐢𝐦
𝒕→𝟎శ

𝒘 𝒙, 𝒚, 𝒕 ൌ 𝒖ሺ𝒙, 𝒚ሻ .

𝒖 𝒙, 𝒚
𝒕 ൌ 𝟏

ൌ

ൌ

ൌ

𝒘 𝒙, 𝒚, 𝒕𝟏
𝟒𝝅𝒕 𝒆ି𝒙𝟐ା𝒚𝟐

𝟒𝒕

𝒕 ൌ4

𝒕 ൌ 𝟖

𝒘 𝒙, 𝒚, 𝟏

𝒘 𝒙, 𝒚, 𝟒

𝒘 𝒙, 𝒚, 𝟖

These images shows the solution 𝒘 𝒙, 𝒚, 𝒕 of heat 
equation with the initial condition  𝒘 𝒙, 𝒚, 𝟎 ൌ 𝒖 𝒙, 𝒚 . 

Here, 𝑮𝒕 𝒙, 𝒚 ≔ 𝟏
𝟒𝝅𝒕

𝒆ି𝒙𝟐శ𝒚𝟐

𝟒𝒕 is the Gaussian Heat Kernel. 









∭ 𝜕௫𝐹ଵ ൅ 𝜕௬𝐹ଶ ൅ 𝜕௭𝐹ଷ   

ൌ ∬ 𝐹ଵ 𝒂, 𝑦, 𝑧 െ 𝐹ଵ 𝟎, 𝑦, 𝑧 𝑑𝑦𝑑𝑧

൅∬ 𝐹ଶ 𝑥, 𝒃, 𝑧 െ 𝐹ଶ 𝑥, 𝟎, 𝑧  𝑑𝑥𝑑𝑧

൅∬ 𝐹ଷ 𝑥, 𝑦, 𝒄 െ 𝐹ଷሺ𝑥, 𝑦, 𝟎ሻ𝑑𝑦𝑑𝑧

Proof for the special case of  Ω ൌ ሼ 𝑥, 𝑦, 𝑧 : 0 ൏ 𝑥 ൏ 𝒂, 0 ൏ 𝑦 ൏ 𝒃, 0 ൏ 𝑦 ൏ 𝒄ሽ (cuboid)



Proof for the case 𝛀 ൌ 𝜴𝟏 ∪ 𝛀𝟐 (union of two cuboids).   

∭ 𝛻 ⋅ 𝐹 =  ∭ 𝛻 ⋅ 𝐹 ൅  ∭ 𝛻 ⋅ 𝐹

𝜴𝟏 𝜴𝟐

ൌ ඵ 𝑭 ⋅ 𝒅𝑺 
𝝏𝜴𝟏

൅ ඵ 𝑭 ⋅ 𝒅𝑺 ൌ 
𝝏𝜴𝟐

ඵ 𝑭 ⋅ 𝒅𝑺  
𝝏𝛀

At the  common interface, the outward normal vectors of 
the two volumes are opposite and therefore the interface 
cancel each other out.

In general, any volume  
can be approximated by a 
union of many cuboids.





Proof for the special case of 𝐶௔௥௘௔ ൌ ሼ 𝑥, 𝑦 : 0 ൏ 𝑥 ൏ 𝒂, 0 ൏ 𝑦 ൏ 𝒃ሽ

z-direction

∬ 𝜵 ൈ 𝑭 ⋅ 𝒅𝑺 ൌ ∬ 𝛁 ൈ 𝑭 ⋅ 𝒏 𝒅𝒙𝒅𝒚 ൌ න න 𝝏𝒙𝑭𝟐 െ 𝝏𝒚𝑭𝟏𝒅𝒙𝒅𝒚 
𝒂

𝟎

𝒃

𝟎

න 𝑭𝟐ሺ𝒂, 𝒚ሻ െ 𝑭𝟐 𝟎, 𝒚 𝒅𝒚
𝒃

𝟎

න𝑭 ⋅ 𝒅ℓ

න െ𝑭𝟏 𝒙, 𝒃 ൅ 𝑭𝟏 𝒙, 𝟎 𝒅𝒚
𝒂

𝟎

න𝑭 ⋅ 𝒅ℓ



Proof for the case of 𝐶௔௥௘௔ ൌ 𝐷ଵ ∪ 𝐷ଶ

∬ 𝜵 ൈ 𝑭 ⋅ 𝒅𝑺   ൌ    ∬ 𝜵 ൈ 𝑭 ⋅ 𝒅𝑺+ ∬ 𝜵 ൈ 𝑭 ⋅ 𝒅𝑺

= +  

z-direction

The two line integrals are evaluated around counter-clockwise contours.  
At the common interface, the directions of contours are opposite and 
therefore they cancel each other out.

𝐷ଵ
𝐷ଶ

𝐷ଵ ∪ 𝐷ଶ

In general, any surface 
can be approximated by a 
union of rectangular  
patches.







𝒙𝒏ା𝟐  𝒙𝒏ା𝟏   𝒙𝒏  𝒙𝒏ା𝟑  

𝒏ା𝟏 𝒏
𝒏

ᇱ
𝒏

𝒏→ஶ  𝒏

Newton’s Iteration Method for finding roots.   



f
𝒇ᇱᇱ 𝒙 ൐ 𝟎

𝒇ᇱᇱ 𝒙 ൏ 𝟎














