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Partial Differential Equations (PDEs)

« Mathematical techniques in science and engineering have evolved to
expand our ability to visualize various physical phenomena of interest
and their characteristics in detail.

« A large variety of natural phenomena occurring in real-life applications
from fluid flows to biology and medical imaging fields are described
by means of PDEs.

« Finding solutions with practical significance and value requires an in-
depth understanding of the underlying physical phenomena with data
acquisition systems as well as the implementation details of SRR T o ;
algorithms. £ N 'Lr‘n=l
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Laplace Equation

9% 9%  9*
Laplace equation AU = (ﬁ + a_yZ + ﬁ) U = 0 where u =

u(x,y,z) is the potential at position (x,y, z).




Heat equation

0
Heat equation a u — Au = 0 whereu= u(x,y,zt) is the

temperature at position (x,y,z) and time t.

Animated plot of the evolution of the temperature in a square metal plate as
predicted by the heat equation. The height and redness indicate the
temperature at each point.

Image credit: Wikipedia



Helmholtz equation

20 —
Helmholtz equation Au + k u = O where u = u(x, y, z) is the

pressure at position (x,y,z).

Image credit: Samsung HS60



Wave equation

62
Wave equation ﬁ — Au = 0 where u= u(x,y,z,t) is the
displacement at position (x,y,z) and time t.
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Image credit: Wikipedia



Maxwell’s equations in
electromagnetism

d
- Faraday's law of induction: V X E = — EB

d
« Ampere’s circuital law: VX H = | + aD

 Gauss's Law for magnetism: V- B = 0
- Gaussslaw:V:-E =p/e

Magnatic hield linss continua
their path sven In the Interior
of tha magmt

Image credit: Wikipedia

Faradays Law of Induction
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Elastic equation

62
Linear elasticity equation ﬁu = uAu + (ﬂ + )].)VV U
where u = u(x,y,z,t) is the displacement at position (x,y,z) and
time t.
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Navier-Stokes Equation in Fluid Mechanics

Inertia per volume

v Divergence of stress
p E+v-Vv = —Vp+ uv?v + f
. advection Presgure Viscosity ~ Other body force
Eulerian grad|ent

acceleration




Hadamard (born in 1865) believed that
mathematical models must satisfy three properties:
existence, uniqueness, and stability.

Linear system

Ax = b is well-posed if the following three conditions hold:
[Existence] for each b, there exist at least one possible solution of
Ax = b;

* [Uniqueness] for each b, Ax = b has a unique solution;

[Stability] the solution is stable under perturbation of b.




Well-posedness

Constructing a mathematical model, which transforms physical phenomena into a
collection of mathematical expressions and data, we should consider the following
three properties:

@ Existence: at least one solution exists. For example, the problem u”’(x) = 1in

[0, 1] has at least one possible solution of u = % whereas the problem
|u”' (x)|?> = —1 has no solution.

@ Uniqueness: only one solution exists. For example, the boundary value problem
u'(x) =u(x) (0<vVx<1), u@0=1,uv(0)=e

has the unique solution of u(x) = e*, whereas the boundary value problem

(|z:83|)’ =0 (0<vx<1), u0)=0, u(1)="1

has infinitely many solutions of u(x) = x, x*, x>, ...
O Continuity or stability: a solution depends continuously on the data.



Understanding PDEs using 2D images as examples

* A function u(x,y) of two variables (x,y) can be represented as a grayscale image.
* The grayscale image is represented as a matrix (u;;), with each element corresponding to

one image pixel.
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Um1  Umn.

Each pixel is assigned a
value of grayscale level
between 0 and 255
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Poisson’s equation

This image u(x,y) =~ u;; can be viewed

as a solution of Poisson’s equation

The sparse data p contains almost the
full information of the image u.



Wave equation

This image u(x,y) =~ u;; can be viewed as a solution of the wave equation

2 ou +3 ou ¢d in Q

> — = ¢ in

dx ay

with the initial condition u(x,0) = f;(x), u(0,y) = f,(y) for 0 < x;9. < L. Here, ¢ is plotted at the right side
of figure and the initial data is the boundary intensity of the image u'on the left.
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Heat equation

These images shows the solution w(x, y,t) of heat
equation with the initial condition w(x,y,0) = u(x,y) .

The convolution w(x,y,t) = G; * u(x,y)
satisfies the heat equation

with the initial condition

w(x,y,0) = }i‘&l w(x,y,t) =u(x,y).

2,.2
1 _x“+y . .
Here, G;(x,y) = o€ s the Gaussian Heat Kernel.
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Review: Vector Analysis

A scalar valued function u(r) defined in 3—dimensional Euclidean space R°
usually represent a numerical quantity depending on the location point
r = (x, y, z) such as temperature, pressure, voltages, altitude, etc.

C(R") : the set of all functions that are continuous in R".
C'(R"): the set of all functions in C(R") with continuous derivative in R".

C?(R"): the set of all functions in C(R") with continuously twice differentiable in
R".



Vector Calculus: Gradient of f ¢ C*(RR")

@ Directional derivative of f at x in the direction d represents a rate of an increase
in f at x in the direction of d:
f(x + hd) — f(x)
" :

@ The gradient of f is a vector-valued function which points to the direction of
maximum increase of f:

Vi(X) = dg« f(x)d™  where  9g~f(X) = sup 9af(r).
|d[=1

24100 = fm,

@ The vector Vf(Xo) is perpendicular to the level set £, = {y € R" : f(y) = A}
because there is no increase of f along the level set L,.

Q@ IfQ, :={y e R": f(y) < A}, the unit outward normal vector n(xo) at Xo on the

boundary 0%2, is —_—
Xo
n(x(}) = |Vf()(0)"
which points to the steepest ascending direction.
@ The curvature along the level set £, is given by
V(%)
V()|

k(X) =V - € L.




Vector Calculus: Divergence of F = (F. R, F) € [CT(R%)]°

@ The divergence of F(r) at a point r, written by divF, is the net outward flux of F
per unit volume of a ball centered at r as the ball shrinks to zero:

divF(r) := lim —— ) - dSy

r—0 471’!’3 8B (
where dS is the surface element, B,(r) is the ball with radius r and center r and
0B is the boundary of B which is a sphere.

@ Divergence theorem. The volume integral of the divergence of a C'-vector field
F = (F1, F2, F3) equals the total outward flux of the vector F through the
boundary of 2:

/g;divF(y)dy = /{m F(y) - dS.

@ Prove that divF = 01 F1 4+ 02 F> + 03 F3 and the divergence theorem.



Divergence theorem. The volume integral of the divergence of a C'-vector field

F = (F1, F2, F3) equals the total outward flux of the vector F through the
boundary of Q:

/ divF(y)dy = | F(y)-dS.

a0

Proof for the special case of Q={(x,y,2):0<x<a, 0<y<b,0<y<c} (cuboid)

IIJ 0Fy + 8,F, + 0,F;

= [[ Fi(a,v,2) — F;(0,y,z)dydz

+ff FZ(x) b; Z) — Fz(x, O, Z) dxdz

+[[ F5(x,v,¢) — F3(x,y,0)dydz




Divergence theorem. The volume integral of the divergence of a C'-vector field
F = (F1, F2, F3) equals the total outward flux of the vector F through the

boundary of Q:

/ divF(y)dy = | F(y)-dS.

a0

Proof for the case Q = 24 U Q, (union of two cuboids).
In general, any volume

M'F :ﬂV'F‘F fffVF can be approximated by a

union of many cuboids.

2, 0,

ﬂaﬂlpéJr LQZF-dsz H‘mF-dS
o

Vs
At the common interface, the outward normal vectors of

the two volumes are opposite and therefore the interface
cancel each other out.




Curl of F = (Fi. Fp, Fs) € [CT(R3)]? e - e .

4 > “
’ o, - .
@ The circulation of a vector field F = (F;, F2, F3) around a closed path C in R? is R P aa 7 g N Y, e A e
defined as a scalar line integral of the vector F over the path C: A, Jgna Sy
\ [ J*
e
% F.dl = f Fidxy + Fodxo + Fadxs. ‘ ’ "
& c L= _

@ The curl of a vector field F, denoted by curlF , is a vector whose magnitude is the B R Wy AR
maximum net circulation of F per unit area as the area shrinks to zero and SSecu ) - . N\ v
whose direction is the normal direction of the area when the area is oriented to * N e e e "
make the net circulation maximum. \ T e e -

O Stokes’s theorem Let Caes be an open smooth surface with its boundary as a | -7

smooth contour C. The surface integral of the curl of a C'-vector field F over the

surface Cares is equal to the closed line integral of the vector F along the contour
C:

VxF(y)-dS—jéF(y)-dl
C

Carea
where
e €©e> ej
curlF =V xF =1 0 0o O3
Fi F F



Stokes’s theorem Let Caes be an open smooth surface with its boundary as a
smooth contour C. The surface integral of the curl of a C'-vector field F over the
surface Carea is equal to the closed line integral of the vector F along the contour
C:

v x F(y) - dS = ?é F(y) - dl
JC

Carea

Proof for the special case of Cpreqg = {(x,y):0<x <a, 0 <y < b}

z-direction

ffVXF-dS=ffV><F-ndxdy=j

[ ] [ ] 0

b ra
j asz — 6yF1dxdy
0

b a
jo Fy(a,y) — F,(0,y)dy fo —F;1(x,b) + F1(x,0)dy

JF-df jF-df



Stokes’s theorem Let Caes be an open smooth surface with its boundary as a
smooth contour C. The surface integral of the curl of a C'-vector field F over the
surface Carea is equal to the closed line integral of the vector F along the contour
C:

In general, any surface
can be approximated by a
union of rectangular
patches.

v x F(y) - dS = jé F(y) - dl
C

Carea

Proof for the case of Cyreq = D1 U D,

Iz-dimﬁon [fJVXF-dS = [[VXF-dS+ [[VXF-dS

D4 D,

D,UD,
=(F-d¢ + [F-d¢ = [F-d¢f

/ f\’ [

The two line integrals are evaluated around counter-clockwise contours.
At the common interface, the directions of contours are opposite and
therefore they cancel each other out.




v

Taylor's Expansion

Taylor's expansion for f € C™1(R) about x is

F(m) (x)

f(x +h) = f(x) + F(x)h+--- + h™ + O(|h|™")

where O(|h|™7) is the remainder term containing (m + 1)th order of h:

Aty = [ Dm0 y)ay = ohim).
This expansion leads to numerical differential formulae of f in various ways.

o f'(x) = Mh_“") + O(h) (forward difference).

o f/(x) = W=Ix=h 4 o(h) (backward difference).

o f'(x) = '(”") Tx=h) 1 O(h?) (centered difference).

o f'(x) = m[f(x — 2h) — 8f(x — h) + 8f(x + h) — f(x + 2h)] + O(h*).




Newton-Raphson method to find a root of f(x) =0

@ The Newton-Raphson method to find a root of f(x) = 0 can be explained from
the first order Taylor’s approximation

f(x + h) = f(x) + hf'(x) + O(h%)

ignoring the term O(h?), which is negligible when h is small.
@ The method is based on the approximation

0 +— f(Xnt1) = f(Xn) + Baf' (X)), (Pn := Xnt1 — Xn).

O It starts with an initial guess xp and generates a sequence {xn,} by the formula

@ Need to check the convergence issue.



Newton'’s Iteration Method for finding roots.

f(Xn)

Xn+1l < Xp — f,(x )
n




Sub-Mean, Mean & Super-Mean Value Properties

Q
~
By Taylor’s expansion, we approximate f/(x) by " QD ~
, f(x + h) + f(x — h) — 2f(x ﬁ

The sign of f/(x) gives local information of f for a sufficiently small positive h:
o f’ _ ~ f(x+h)+f(x—h) _
f’(x) = 0= f(x) 5 (mean value property, MVP) F'(x) > 0
O f'(x) > 0= f(x) < MHhHI=h) (gyp-MVP).
9 f'(x) < 0= f(x) > =N (g per-MVP).
ff(x) <0




Taylor’s approximation for f € C3(IR")

f(x+h) = f(x)+VF(x)-h+ J(D*(x)h) - h+ O(h[)
where X = (X1, Xz, -+ ,Xa), h = (hy,--- , hy) and D?f(x) is the Hessian matrix:
42 ik
gx%r (x) - aﬁ;fxn (x)
D?f(x) = |
= ELC I <1¢Y
E)xn(‘))q axg

Local Maxima & Minima

@ If f has a local maximum (minimum) at Xo, then the Hessian matrix sz(xo) IS
negative (positive) semi-definite.

@ If D?f(xo) is negative (positive) definite and V£(X) = 0, then f has a local
maximum (minimum) at xo.



Proof of Taylor’s approximation for f ¢ C3(R")

’
f(x+h) = f(x)+Vf(x)-h+§(D2f(x)h)-h++O(|h|3)
Proof. 1 :
f(x + h) — f(x) = [, gtfx+th Yot = [y S0y 2L(x + th)hidt
=32 (f?i,(xHh)h Grtat (wny? 950 D = 4)
—Zf1 [1 h— [ (f”(x+th)h)(r—1)dr]
Z (xh+UZ:1/ (1—t ( rdj(x+th)hh) ot
Vi(x)h Ry (h,x)
Integration by part yields

Ri(h,x) = ngzi 01 % (_ L _2!1)2> (()x D%, (X + th)h; h)

~

v

(1t

(x)hh+ Z / E= (8T o thyhih ) o
2 OXi0X;OXk Gl

f,f fjk'i

~ s

s

—

(D'(x)h)-h Rz (h,x)= O(Ih\a)



Vector space R"” & Inner Product

@ For x,y € R", define inner product and norm:

n

(x,y) = > x()y(), [Ixll = v/{x,x)

j=1

@ The distance (or metric) between x and y is defined by ||x — y||, and hence
|x —y|| = 0 implies x =y.

9 If (x,y) =0, xand y are said to be orthogonal.

o {eq,es, - ,e,} is said to be an orthonormal basis of R" if
R" = span{eq,ez, - -- ,€n} & (ej,e;) = d; foralli,j
O If {e1,e2, - ,en} is an orthonormal basis, then every x € R" can be

represented uniquely by
n

X =) (x,e)e;.

j=1
@ The distance between x and V,, = span{e+,--- ,en} is

dist(x, Vin) = [|x — Z(x, e/)ejl| = J Z(X,ej)z

j=1 j=m



Vector space C|0, 27| & Inner Product

@ Let CJ[0,27] be the space of all continuous functions 7 : [0, 27] — C.
Q@ For f,g € V, we define the inner product

<f,g>:/0“f(x)@dx

where g(x) denotes the complex conjugate of g(x).
@ The above inner product can be approximated by

n f(X1) Q(X1)
(f,9) =~ Y _fix)ax)ax=| = || : [ax
j=1

f(xn) a(xn)

where we divide the interval [0, 2] into n subintervals with endpoints

Xo=0< Xy <--- < X, = 2w and equal width Ax = 2.

n

@ Two functions f and g are said to be orthogonal if

<f,g>:/0ﬁf(x)ﬁdx —



Hilbert space: Complete vector space equipped with an inner product
and norm

@ L*-space. Let / be the interval [0, 1]. We denote the set of all square integrable
complex functions by L2(/), that is,

L3()) = { f| /|f(x)|2 dx < oo }.
/
@ Inner product. For f, g € L?(/), we define the inner product as

(f.) :'/If(x)ﬁ dlx

where g(x) denotes the complex conjugate of g(x).

@ Norm. For f, g € V, the distance between f and g can be defined by

¥l = \//0 [f(x) — g(x)[2dx.

The vector space L?(/) with the above inner product is a Hilbert space and retains
features of Euclidean space.




Vector space

The followings are examples of vector space.
O R" = {(x1,X2,+-+ ,Xn) : X1,--+,Xn € R}: n-dimensional Euclidean space.
O C"={(x1,X2,++ ,Xn) : X1,+-+ ,Xn € C}.

@ C([a, b)) : the set of all complex valued functions that are continuous on the
interval [a, b].

@ C'([a, b)) := {f € C([a,b]) : F' € Cla, b]} : the set of all functions in
C([a, b]) with continuous derivative on the interval [a, b].

o L*((a,b)) :={f:(a,b) > R : fab |f(x)|2dx < oo}, the set of all square
integrable functions on the open interval (a, b).

o H'((a, b)) := {f € L%(a,b) : [)|F(x)|?dx < oo}.



