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Elliptic PDE for inhomogeneous materials
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Note that 0 can be discontinuous, i.e. 0 & C(£2).
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@ This PDE makes sense in classical sense when o € C'(Q) and u € C*(Q).

@ In practice, the material property o may change abruptly. For example, a
conductivity distribution ¢ inside the human body Q may have a jump along the
boundary of two different organs. Along such a boundary, the electrical field
E = —Vu may be discontinuous due to interface conditions of the electric field
(like the refractive condition of Snell’'s law). In this case, there exists no solution
u € C%(R) in the classical sense.



How can we understand V - (cVu) = 0

when O is discontinuous?

Answer: It can be I
understood by using
variational framework.

Variational framework

V- (oVw) =0 in 0| {m)

faVu-vd) =0 Vd € HI(Q)
Q




Actual PDE problems are often very different from the textbook
contents which deal with simplified toy models

To find solutions that have practical significance and value, it is necessary to gain a deep
understanding of the underlying physical phenomena with the parameter details of PDE

models as well as the data acquisition systems

« How to get the domain Q2
 How to get the boundary data?
« What is the coefficient of elliptic PDE?
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:=potential due to j-th injection current:

(V-(V#)=0 i Q
(Li+2k’Y e, =Ux, k=1,---E
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| will not deal with this issue in this lecture



Optional What is the coefficient 4 (or o) of elliptic PDE?

The coefficient A (in electrical impedance area) should be understood as a
V- (AVu) = () homogenized admittivity tensor that depends on scale, position, cell
structure including molecular compositions of cells, shape and direction of cells,
011 01y O3 cellular membranes, intra-and extra-cellular fluids, concentrations and
A = mobilities of ions. Homogenization and Harmonic analysis (layer potential
( ) theories) are related to this subject.
(See the paper https://www.sciencedirect.com/science/article/pii/S0021782415001592 & effective conductivity in
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- EIT: Process of estimation of A

s Neumann-to-Dirichlet map %

Under the assumption Wﬁ AN
that A = o is isotropic, ) AN
we get lung ElT(electrical

my webpage https://www.deepmediview.com/blank-15)
— Lung ventilation: Estimation of A over time

impedance tomography)

images.
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Understanding Variational Framework
@ [[ovuvo-0 vo cnio)
Q

Consider the following one-dimensional Dirichlet problem:

1 ifx<DO.

{g{(a(x)iu(x)) =0 (-t U(X):{ 2 ifx>0 o

u(—1)=-2, u(1)=1

@ u satisfies u”(x) =0in (—1,1)\ {0} with u(—-1) =2, u(1) =1.

@ u # v, the solution of v"/(x) = 0in (—1,1) with v(=1) =2, v(1) =1.
@ The classical derivative v’ does not exist at x = 0:

. 1 ifx>0
w)={ 5 i 255 Lo & u’(x)—{ﬂ i x =0
2 ifx<oO

@ The difficulty can be removed by the use of the variational framework:

1
/ o(X)U' (x)¢' (x)dx =0 Vo € Cj(—1,1).
S Why? See the next slide.




1
jx (o jx w)=0 in (-1 {my j_lcr(x)u'(x)qb'(x)dx =0, v € (g ([-1,1])

Transmission condition
1 1 1 Y S
0= j—1 o(x)u'(x)p'(x)dx = jo 2u'(x)¢p' (x)dx + f
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Elliptic PDE

{ —V - (e(r)Vu(r)) =0 in Q

U|(')Q =T
@ The physically meaningful solution v must have a finite energy:
d(v) = / o (x)|Vv(r)[Pdx < oo.
Q

@ Hence, u should be contained in the set
Ao = {v € [5(Q) : d(v) < xo}.

@ Assuming 0 < infg o < SUpg o < 00,

Ao = H'(Q) = {v: [V = \//Q|Vu|2+|u|2dx<oo}

This space is called the Sobolev space H'.



Example The Dirichlet problem is known to be well-posed .

However, without the Sobolev constraint H'(Q), the
Dirichlet problem can be ill-posed.

(V-Vu=0 in Q
u| =0 Q

3
It is because there exist infinitely Q= { (r,0):0<r<1,0<6< E”}
many solutions in C*(Q):

\

2n 2n
— —— . 2
u(r,B): (1‘3 — 7T 3 51n?n9, n=172--

u¢ H'(Q)




Weak solution

Assume o ¢ C(Q) and 0 < o < co. Consider

[Assume ¢ ¢ C(Q)]

—V - (a(r)Vu(r)) =0 in Q
U|aQ — 1 4

@ When u € C?(Q), there is no difference between the classical and variational
problems.

O However, if o ¢ C(Q), then the minimization problem has no solution in the class
C?(€). Obviously, the classical problem does not have a solution.

@ We can construct a minimizing sequence {u,} in C?(Q) which is a Cauchy
sequence with respect to the norm [|u|| 41 (.-

@ Although the Cauchy sequence {u,} does not converge within_Cz(Q), it
converges in the Sobolev space H'(Q), the completion of C*(Q) with respect to
the norm ||u|| 41(q). This means that we can solve the minimization and

variational problem within the Sobolev space H'(Q).



Generalized derivative

The generalized derivative can be explained by means of the integrating by parts
formula:

/u@xfcbdx:—/ Oxu ¢ dx (Vo € Cp°(2)).
Q Q

In general,
/ ud* ¢ dx=(—1) [ 0%u o dx (Vo e Cy (Q))
Q JQ

where the notions 0” and |«| are understood in the following way:

O a=(ay,---,an) €Ng, N={1,2,---},and Np = NU {0}.

0 9%u =09y dgru; for example, 9% u = 92 93, u.

Q |a| - ZE:‘I Q.
A function v; satisfying the following equality behaves like the classical derivative oy, u:

/ U Ox¢ dx = — Vi ¢dx, VYoe Cy(Q).
Q
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Sobolev space

We are now ready to introduce the Sobolev space W**(Q) and Wé"p(Q) where 2 be
a domain in R” with its boundary 0Q and 1 < p < oo:

@ W'P(Q)and WO1 P(Q) are the completion (or closure) of C*°(Q) and C§°(Q),
respectively, with respect to the norm

. 1/p
lullyrp = (/ P + \Vu|pdx) |
Q

In other words,

WJP(Q) = {U : duk € CSO(Q) 5.1, kll_)m’)o ”Uk - UHW1vP(Q) = O}

@ W?P(Q) and WZP(Q) are the completion (or closure) of C*(2) and C§°(Q),
respectively, with respect to the norm

] 1/p
lullwer = ( / P + (VU + |VVu|*°dx) |
JQ

@ We denote H'(Q) = W'2(Q), H}(Q) = W,*(Q), H*(Q) = W??(Q) and
H3 (Q) = Ws*(9).



Optional

See my other lecture for details about “history of compactness, Sobolev space,
and measure theory”.

COMPACTNESS AND DIRICHLET’S PRINCIPLE

JIN KEUN SEO ! AND HAMDI ZORGATI >

The concept of compactness and its introduction was highlighted by the famous debate be-
tween Riemann(1826-1866) and Weierstrass(1815-1897) regarding the convergence issue of
the minimization problem in Dirichlet’s principle. Riemann used the Dirichlet principle as fol-
lows: If u is the solution of Dirichlet’s problem Au = 0 in a bounded smooth domain 2 C R?
with boundary data u|sn = ¢ € C(952), then u can be obtained by the limit of the minimizing
sequence {vy, } of the energy functional

f(v) :=/&:B|Vv|2dm (1.1)

within an admissible set such as A := {v € C2(Q)NC(Q) : v|sq = ¢}. In short, Riemann’s
observation was that f attains its minimum at a function w in the admissible class.



Theorem (Simplified version of Poincaré inequalities)

LetQ = {(x,y) : 0 < X,y < a}. A simplified version of the Poincaré inequality is

u
I [ 2

C
UECS{Q] HVUHLE[H]

where C is a positive constant depending only on 0.

The Poincaré inequality uses the special property of u|sq = 0 to get

2 a
u(x, y)|* < < a/ﬂ IVu(x’, y)Pdx’

a 2
[ 15utx e

[ < [ vup
Q Q

and hence



Theorem (Simplified version of trace inequalities)
LetQ = {(x,y) : 0 < x,y < a}. A simplified version of the trace inequality is

lull 2a0)

C

sup
ueC(Q) ||UHH1(Q)

where C is a positive constant depending only on Q2.

From the fundamental theorem of calculus,

d 5 a
[ we.ykey = [
0 0
and therefore

[iuonray < [yl + [ |v’u(x2y)|dx’]2 dy

a da
< [ [otey) + a [ 1wt o ay
JO J0

2
dy

X a ! !
U(X:y)_/o au(xny)dx

a
32[ |u(x?y)|2dy+23[ IVul®dr  (dr = dxdy).
0 Q



Theorem (Sobolev’s inequality)
Let u € H'(R"). The following inequality holds:

Q@ Forn=> 3,
2 2
|Ullf2n/(i—2) < Cal[VUl[{2gn)
where Cp, — 4 2—2{nﬂ_—1—1/n[r(n+1 )szn'
Q Forn — 1 ||UI|LOO([R] <_:.- 2HU||H1{R]’ Supx!y W < ||UI||L2'

Q@ Forn= 2, ”U”Lq(RE) S CQHUHH1(IR)’ (VE S = OO) where
Cq < [9'2/9g — 1)~"H1/9((q - 2)/8m)"/2=1/9]%.

O LetQ be a C%'-domainand1 < p< q,m=>1andk < m. Then,

”U”L"ﬂ-/(ﬂ—kﬂ}(n] < C”U”wk,p{g) if kp < n,

“uHCm{ﬂ) =C Hu‘lwk-rm,p(g) if kp >n

where C is independent of u.

For n > 3, the proof of the Sobolev inequality is based on the identity
u) = [ V(i) Vuly)ay.

where ¢/|x — y|"? is the fundamental solution of Laplacian.

Optional



Helmholtz Decomposition

The Helmholtz decomposition states that any smooth vector field F in a smooth
bounded domain 2 can be resolved into the sum of a divergence-free (solenoidal)
vector field and a curl-free (irrotational) vector field.

Theorem
Every vector field F(r) = (F1(r), F2(r), F3(r)) € [L2(Q)]® can be decomposed into
F(r) = —Vu(r) + V x A(r) + Harmonic in Q

where u is a scalar function, V - A = 0 and Harmonic is a vector field whose Laplacian
is zero in Q. Moreover, u and A are solutions of V2u = V - F and VA = V x F with

appropriate boundary conditions. Hence, these can be uniquely determined up to
harmonic functions;

u(r) = — 27 ) dr’ + Harmonic
o 4m|r —r'|
and
A(r) = WAl )dr + Harmonic.

o 4r|r—1r|




Helmholtz’s decomposition

! !
F(r) = —Vf il dr' + V x f VA B g + Harmonic
q 4rnlr—1r'| q 4rlr—r/|

@ Write

4 = / P o 2 1 ! !
F(r)_/ﬂa(r ¢ )F(F)ar’ = fﬂv (4ﬂ|r_r,l) F(r')ar.
@ Integrating by parts

_ 1 2 / / .
F(r) = — fn anr — rf|v F(r')dr’ + Harmaonic.

@ Using the vector identity —V?F = V x (V x F) — V(V - F),

F(r) = / 1 [V x(VxF)—V(V-F)|dV + Harmonic, e Q.
q 4mr—r|

Integrating by parts again, we have the result.



